論文の概要: Flat Posterior Does Matter For Bayesian Transfer Learning
- arxiv url: http://arxiv.org/abs/2406.15664v1
- Date: Fri, 21 Jun 2024 21:44:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 21:14:22.373930
- Title: Flat Posterior Does Matter For Bayesian Transfer Learning
- Title(参考訳): ベージアン・トランスファー・ラーニングのためのフラット・ポストプレアー
- Authors: Sungjun Lim, Jeyoon Yeom, Sooyon Kim, Hoyoon Byun, Jinho Kang, Yohan Jung, Jiyoung Jung, Kyungwoo Song,
- Abstract要約: ベイジアンニューラルネットワーク(BNN)は、ベイジアン手法をニューラルネットワークアーキテクチャに統合する。
BNNはベイズモデル平均化(BMA)や不確実性定量化などの利点を提供する。
これらの利点にもかかわらず、BNNの転送学習は広く研究されておらず、改善が限られている。
本稿では,パラメータ空間の後方のばらつきを計算し,BNNの性質に合わせたSA-BMAを提案する。
- 参考スコア(独自算出の注目度): 15.371686185626162
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The large-scale pre-trained neural network has achieved notable success in enhancing performance for downstream tasks. Another promising approach for generalization is Bayesian Neural Network (BNN), which integrates Bayesian methods into neural network architectures, offering advantages such as Bayesian Model averaging (BMA) and uncertainty quantification. Despite these benefits, transfer learning for BNNs has not been widely investigated and shows limited improvement. We hypothesize that this issue arises from the inability to find flat minima, which is crucial for generalization performance. To address this, we evaluate the sharpness of BNNs in various settings, revealing their insufficiency in seeking flat minima and the influence of flatness on BMA performance. Therefore, we propose Sharpness-aware Bayesian Model Averaging (SA-BMA), a Bayesian-fitting flat posterior seeking optimizer integrated with Bayesian transfer learning. SA-BMA calculates the divergence between posteriors in the parameter space, aligning with the nature of BNNs, and serves as a generalized version of existing sharpness-aware optimizers. We validate that SA-BMA improves generalization performance in few-shot classification and distribution shift scenarios by ensuring flatness.
- Abstract(参考訳): 大規模な事前学習型ニューラルネットワークは、下流タスクのパフォーマンス向上に成功している。
ベイジアンニューラルネットワークは、ベイジアン手法をニューラルネットワークアーキテクチャに統合し、ベイジアンモデル平均化(BMA)や不確実量化などの利点を提供する。
これらの利点にもかかわらず、BNNの転送学習は広く研究されておらず、改善が限られている。
この問題は、一般化性能に欠かせない平坦なミニマを見つけることができないことから生じると仮定する。
そこで我々は, BNNのシャープさを様々な環境で評価し, フラットなミニマを追求する上で, フラットネスがBMA性能に与える影響を明らかにする。
そこで本研究では,ベイジアン変換学習と統合したベイジアン探索最適化器である,シャープネス対応ベイジアンモデル平均化(SA-BMA)を提案する。
SA-BMAはパラメータ空間の後方間のばらつきを計算し、BNNの性質と整合し、既存のシャープネス対応オプティマイザの一般化版として機能する。
我々は,SA-BMAが平坦性を確保することにより,数ショットの分類および分布シフトシナリオにおける一般化性能を向上させることを検証する。
関連論文リスト
- Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling [7.084307990641011]
ベイズ最後の層重みの変分学習に拡散法と暗黙の先行法を組み合わせた新しい手法を提案する。
そこで本手法は,BLLモデルの表現能力を高めることを目的とする。
論文 参考訳(メタデータ) (2024-08-07T12:59:58Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Flat Seeking Bayesian Neural Networks [32.61417343756841]
我々は、シャープネスを意識した後部における理論、ベイズ的設定、および変分推論アプローチを開発する。
具体的には、シャープネス認識後部から採取したモデルと、このシャープネス認識後部を推定する最適な近似後部モデルにより、平坦性が向上した。
我々は最先端のベイズニューラルネットワークによるシャープネス認識後部を応用して実験を行う。
論文 参考訳(メタデータ) (2023-02-06T11:40:44Z) - Sample-Efficient Optimisation with Probabilistic Transformer Surrogates [66.98962321504085]
本稿では,ベイズ最適化における最先端確率変換器の適用可能性について検討する。
トレーニング手順と損失定義から生じる2つの欠点を観察し、ブラックボックス最適化のプロキシとして直接デプロイすることを妨げる。
1)非一様分散点を前処理するBO調整トレーニング,2)予測性能を向上させるために最適な定常点をフィルタする新しい近似後正則整定器トレードオフ精度と入力感度を導入する。
論文 参考訳(メタデータ) (2022-05-27T11:13:17Z) - Posterior Refinement Improves Sample Efficiency in Bayesian Neural
Networks [27.11052209129402]
実験により、MC近似予測分布の鍵は、近似後部自体の品質であることが示された。
得られた後続近似は、ゴールド標準のフルバッチハミルトニアンモンテカルロでさえ競合することを示した。
論文 参考訳(メタデータ) (2022-05-20T09:24:39Z) - What Are Bayesian Neural Network Posteriors Really Like? [63.950151520585024]
ハミルトニアンモンテカルロは、標準およびディープアンサンブルよりも大きな性能向上を達成できることを示す。
また,深部分布は標準SGLDとHMCに類似しており,標準変動推論に近いことが示された。
論文 参考訳(メタデータ) (2021-04-29T15:38:46Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Bayesian Neural Networks With Maximum Mean Discrepancy Regularization [13.97417198693205]
画像分類タスクを含む複数のベンチマークにおいて,BNNの精度が向上することを示す。
また, ある予測に対する不確実性を推定するための新しい定式化を行い, 敵の攻撃に対してより堅牢な行動を示す。
論文 参考訳(メタデータ) (2020-03-02T14:54:48Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
ディープアンサンブルはベイズ辺化を近似する有効なメカニズムであることを示す。
また,アトラクションの流域内での辺縁化により,予測分布をさらに改善する関連手法を提案する。
論文 参考訳(メタデータ) (2020-02-20T15:13:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。