論文の概要: Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability
- arxiv url: http://arxiv.org/abs/2310.13402v1
- Date: Fri, 20 Oct 2023 10:20:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 23:12:24.357259
- Title: Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability
- Title(参考訳): 可微分被覆確率を用いた神経シミュレーションに基づく推定の校正
- Authors: Maciej Falkiewicz, Naoya Takeishi, Imahn Shekhzadeh, Antoine Wehenkel,
Arnaud Delaunoy, Gilles Louppe, Alexandros Kalousis
- Abstract要約: ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
- 参考スコア(独自算出の注目度): 50.44439018155837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian inference allows expressing the uncertainty of posterior belief
under a probabilistic model given prior information and the likelihood of the
evidence. Predominantly, the likelihood function is only implicitly established
by a simulator posing the need for simulation-based inference (SBI). However,
the existing algorithms can yield overconfident posteriors (Hermans *et al.*,
2022) defeating the whole purpose of credibility if the uncertainty
quantification is inaccurate. We propose to include a calibration term directly
into the training objective of the neural model in selected amortized SBI
techniques. By introducing a relaxation of the classical formulation of
calibration error we enable end-to-end backpropagation. The proposed method is
not tied to any particular neural model and brings moderate computational
overhead compared to the profits it introduces. It is directly applicable to
existing computational pipelines allowing reliable black-box posterior
inference. We empirically show on six benchmark problems that the proposed
method achieves competitive or better results in terms of coverage and expected
posterior density than the previously existing approaches.
- Abstract(参考訳): ベイズ推論は、事前情報と証拠の可能性を与えられた確率モデルの下で、後方信念の不確実性を表現することができる。
主に、確率関数はシミュレーションベース推論(sbi)の必要性を満たすシミュレータによってのみ暗黙的に確立される。
しかし、既存のアルゴリズムは、不確かさの定量化が不正確であれば、信頼性のすべての目的を破ることができる(Hermans *et al.*, 2022)。
本稿では,神経モデルの訓練目的に直接キャリブレーション用語を含める手法を提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
提案手法は, 特定のニューラルモデルに縛られず, 導入した利益と比較して, 計算オーバーヘッドが緩やかである。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
提案手法は,既存の手法に比べて,カバー範囲と予測後部密度の両面で競合的あるいは良好な結果が得られるという6つのベンチマーク問題を実証的に示す。
関連論文リスト
- A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
トレーニングされたニューラルネットワークに観測データを供給することにより、モデルパラメータの後方分布を効率的に取得する。
理論的には、我々の後部はKulback-Leiblerの発散において真の後部に収束することを示す。
論文 参考訳(メタデータ) (2024-04-16T20:40:15Z) - Amortized Bayesian Decision Making for simulation-based models [11.375835331641548]
シミュレータ上でベイズ決定を行う方法に関する問題に対処する。
本手法は,シミュレーションデータ上にニューラルネットワークを学習し,予測コストを予測する。
次に,医療神経科学における実世界のシミュレーターにおける最適な行動を推測するために,本手法を適用した。
論文 参考訳(メタデータ) (2023-12-05T11:29:54Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Variational Inference with Coverage Guarantees in Simulation-Based Inference [18.818573945984873]
コンフォーマル化補正ニューラル変分推論(CANVI)を提案する。
CANVIは各候補に基づいて共形予測器を構築し、予測効率と呼ばれる計量を用いて予測器を比較し、最も効率的な予測器を返す。
我々は,CANVIが生成する領域の予測効率の低い境界を証明し,その近似に基づいて,後部近似の品質と予測領域の予測効率の関係について検討する。
論文 参考訳(メタデータ) (2023-05-23T17:24:04Z) - Theoretical characterization of uncertainty in high-dimensional linear
classification [24.073221004661427]
本研究では,高次元入力データとラベルの限られたサンプル数から学習する不確実性が,近似メッセージパッシングアルゴリズムによって得られることを示す。
我々は,信頼度を適切に正則化することで緩和する方法について論じるとともに,損失に対するクロスバリデーションが0/1誤差よりもキャリブレーションが優れていることを示す。
論文 参考訳(メタデータ) (2022-02-07T15:32:07Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
本稿では,事前知識がトレーニングデータとして利用可能である逆問題に対して,ベイズ推定を行う新しい手法を提案する。
容易に検証可能な条件下で,関連する後方モーメントの存在と適切性を確立する。
モデル精度解析により、データ駆動モデルによって報告されるベイズ確率は、頻繁な定義の下で著しく正確であることが示された。
論文 参考訳(メタデータ) (2021-03-18T11:34:08Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。