High-Efficiency Low-Noise Optomechanical Crystal Photon-Phonon Transducers
- URL: http://arxiv.org/abs/2406.15701v1
- Date: Sat, 22 Jun 2024 01:05:36 GMT
- Title: High-Efficiency Low-Noise Optomechanical Crystal Photon-Phonon Transducers
- Authors: Sameer Sonar, Utku Hatipoglu, Srujan Meesala, David Lake, Hengjiang Ren, Oskar Painter,
- Abstract summary: Optomechanical crystals (OMCs) enable coherent interactions between optical photons and microwave acoustic phonons.
thermal noise at cryogenic (millikelvin) temperatures is one of the primary limitations of performance for OMC-based quantum transducers.
- Score: 0.18472148461613155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optomechanical crystals (OMCs) enable coherent interactions between optical photons and microwave acoustic phonons, and represent a platform for implementing quantum transduction between microwave and optical signals. Optical absorption-induced thermal noise at cryogenic (millikelvin) temperatures is one of the primary limitations of performance for OMC-based quantum transducers. Here, we address this challenge with a two-dimensional silicon OMC resonator that is side-coupled to a mechanically detached optical waveguide, realizing a six-fold reduction in the heating rate of the acoustic resonator compared to prior state-of-the-art, while operating in a regime of high optomechanical-backaction and millikelvin base temperature. This reduced heating translates into a demonstrated phonon-to-photon conversion efficiency of 93.1 $\pm$ 0.8% at an added noise of 0.25 $\pm$ 0.01 quanta, representing a significant advance toward quantum-limited microwave-optical frequency conversion and optically-controlled quantum acoustic memories.
Related papers
- Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Optomechanical ring resonator for efficient microwave-optical frequency
conversion [3.8548408603545106]
Phonons traveling in solid-state devices are emerging as a universal excitation that can couple to different physical systems through mechanical interaction.
It is possible to build optomechanical integrated circuits (OMICs) that guide both photons and phonons and interconnect discrete photonic and phononic devices.
Here, we demonstrate an OMIC including an optomechanical ring resonator (OMR) in which infrared photons and GHz phonons co-resonate to induce significantly enhanced interconversion.
arXiv Detail & Related papers (2023-11-10T23:54:07Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Electro-optic transduction in silicon via GHz-frequency nanomechanics [7.513920571044517]
We show an efficient microwave-to-optical photon conversion efficiency of $1.8 times 10-7$ in a 3.3 MHz bandwidth.
Our results mark a stepping stone towards quantum transduction with integrated devices made from crystalline silicon.
arXiv Detail & Related papers (2022-10-24T19:06:57Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Low-loss high-impedance circuit for quantum transduction between optical
and microwave photons [0.0]
Quantum transducers between microwave and optical photons are essential for long-distance quantum networks based on superconducting qubits.
An optically active self-assembled quantum dot molecule (QDM) is an attractive platform for the implementation of a quantum transducer.
We present a design of a QD-high impedance resonator device with a low microwave loss and an expected large single-microwave photon coupling strength of 100s of MHz.
arXiv Detail & Related papers (2021-12-09T18:31:13Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Ground-state Pulsed Cavity Electro-optics for Microwave-to-optical
Conversion [5.872328549827905]
We study the extraneous noise added to an electro-optic transducer in its quantum ground state under an intense pulsed optical excitation.
Our results shed light on suppressing microwave noise in a cavity electro-optic system under intense optical drive, which is an essential step towards quantum state between microwave and optical frequencies.
arXiv Detail & Related papers (2020-10-22T02:53:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.