psPRF:Pansharpening Planar Neural Radiance Field for Generalized 3D Reconstruction Satellite Imagery
- URL: http://arxiv.org/abs/2406.15707v1
- Date: Sat, 22 Jun 2024 02:02:32 GMT
- Title: psPRF:Pansharpening Planar Neural Radiance Field for Generalized 3D Reconstruction Satellite Imagery
- Authors: Tongtong Zhang, Yuanxiang Li,
- Abstract summary: Most current NeRF variants for satellites are designed for one specific scene and fall short of generalization to new geometry.
This paper introduces psPRF, a Planar Neural Radiance Field designed for paired low-resolution RGB (LR-RGB) and high-resolution panchromatic (HR-PAN) images from satellite sensors with Rational Polynomial Cameras (RPC)
To support the generalization ability of psRPF across scenes, we adopt projection loss to ensure strong geometry self-supervision.
- Score: 0.6445605125467574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most current NeRF variants for satellites are designed for one specific scene and fall short of generalization to new geometry. Additionally, the RGB images require pan-sharpening as an independent preprocessing step. This paper introduces psPRF, a Planar Neural Radiance Field designed for paired low-resolution RGB (LR-RGB) and high-resolution panchromatic (HR-PAN) images from satellite sensors with Rational Polynomial Cameras (RPC). To capture the cross-modal prior from both of the LR-RGB and HR-PAN images, for the Unet-shaped architecture, we adapt the encoder with explicit spectral-to-spatial convolution (SSConv) to enhance the multimodal representation ability. To support the generalization ability of psRPF across scenes, we adopt projection loss to ensure strong geometry self-supervision. The proposed method is evaluated with the multi-scene WorldView-3 LR-RGB and HR-PAN pairs, and achieves state-of-the-art performance.
Related papers
- Contourlet Refinement Gate Framework for Thermal Spectrum Distribution Regularized Infrared Image Super-Resolution [54.293362972473595]
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts.
Current approaches to address SR tasks are either dedicated to extracting RGB image features or assuming similar degradation patterns.
We propose a Contourlet refinement gate framework to restore infrared modal-specific features while preserving spectral distribution fidelity.
arXiv Detail & Related papers (2024-11-19T14:24:03Z) - PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction [37.14913599050765]
We propose a fast planar-based Gaussian splatting reconstruction representation (PGSR) to achieve high-fidelity surface reconstruction.
We then introduce single-view geometric, multi-view photometric, and geometric regularization to preserve global geometric accuracy.
Our method achieves fast training and rendering while maintaining high-fidelity rendering and geometric reconstruction, outperforming 3DGS-based and NeRF-based methods.
arXiv Detail & Related papers (2024-06-10T17:59:01Z) - SwinFuSR: an image fusion-inspired model for RGB-guided thermal image super-resolution [0.16385815610837165]
Super-resolution (SR) methods often struggle with thermal images due to lack of high-frequency details.
Inspired by SwinFusion, we propose SwinFuSR, a guided SR architecture based on Swin transformers.
Our method has few parameters and outperforms state of the art models in terms of Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM)
arXiv Detail & Related papers (2024-04-22T19:01:18Z) - Pano-NeRF: Synthesizing High Dynamic Range Novel Views with Geometry
from Sparse Low Dynamic Range Panoramic Images [82.1477261107279]
We propose the irradiance fields from sparse LDR panoramic images to increase the observation counts for faithful geometry recovery.
Experiments demonstrate that the irradiance fields outperform state-of-the-art methods on both geometry recovery and HDR reconstruction.
arXiv Detail & Related papers (2023-12-26T08:10:22Z) - SGNet: Structure Guided Network via Gradient-Frequency Awareness for
Depth Map Super-Resolution [17.847216843129342]
Depth super-resolution aims to restore high-resolution (HR) depth from low-resolution (LR) one, where RGB image is often used to promote this task.
Recent image guided DSR approaches mainly focus on spatial domain to rebuild depth structure.
We propose structure guided network (SGNet), a method that pays more attention to gradient and frequency domains.
arXiv Detail & Related papers (2023-12-10T07:17:06Z) - rpcPRF: Generalizable MPI Neural Radiance Field for Satellite Camera [0.76146285961466]
This paper presents rpcPRF, a Multiplane Images (MPI) based Planar neural Radiance Field for Rational Polynomial Camera (RPC)
We propose to use reprojection supervision to induce the predicted MPI to learn the correct geometry between the 3D coordinates and the images.
We remove the stringent requirement of dense depth supervision from deep multiview-stereo-based methods by introducing rendering techniques of radiance fields.
arXiv Detail & Related papers (2023-10-11T04:05:11Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - HDR Reconstruction from Bracketed Exposures and Events [12.565039752529797]
Reconstruction of high-quality HDR images is at the core of modern computational photography.
We present a multi-modal end-to-end learning-based HDR imaging system that fuses bracketed images and event in the feature domain.
Our framework exploits the higher temporal resolution of events by sub-sampling the input event streams using a sliding window.
arXiv Detail & Related papers (2022-03-28T15:04:41Z) - NeRF-SR: High-Quality Neural Radiance Fields using Super-Sampling [82.99453001445478]
We present NeRF-SR, a solution for high-resolution (HR) novel view synthesis with mostly low-resolution (LR) inputs.
Our method is built upon Neural Radiance Fields (NeRF) that predicts per-point density and color with a multi-layer perceptron.
arXiv Detail & Related papers (2021-12-03T07:33:47Z) - Tuning IR-cut Filter for Illumination-aware Spectral Reconstruction from
RGB [84.1657998542458]
It has been proven that the reconstruction accuracy relies heavily on the spectral response of the RGB camera in use.
This paper explores the filter-array based color imaging mechanism of existing RGB cameras, and proposes to design the IR-cut filter properly for improved spectral recovery.
arXiv Detail & Related papers (2021-03-26T19:42:21Z) - Deep Burst Super-Resolution [165.90445859851448]
We propose a novel architecture for the burst super-resolution task.
Our network takes multiple noisy RAW images as input, and generates a denoised, super-resolved RGB image as output.
In order to enable training and evaluation on real-world data, we additionally introduce the BurstSR dataset.
arXiv Detail & Related papers (2021-01-26T18:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.