Speech Analysis of Language Varieties in Italy
- URL: http://arxiv.org/abs/2406.15862v1
- Date: Sat, 22 Jun 2024 14:19:51 GMT
- Title: Speech Analysis of Language Varieties in Italy
- Authors: Moreno La Quatra, Alkis Koudounas, Elena Baralis, Sabato Marco Siniscalchi,
- Abstract summary: We focus on automatically identifying the geographic region of origin of speech samples drawn from Italy's diverse language varieties.
We also seek to uncover new insights into the relationships among these diverse yet closely related varieties.
- Score: 18.464078978885812
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Italy exhibits rich linguistic diversity across its territory due to the distinct regional languages spoken in different areas. Recent advances in self-supervised learning provide new opportunities to analyze Italy's linguistic varieties using speech data alone. This includes the potential to leverage representations learned from large amounts of data to better examine nuances between closely related linguistic varieties. In this study, we focus on automatically identifying the geographic region of origin of speech samples drawn from Italy's diverse language varieties. We leverage self-supervised learning models to tackle this task and analyze differences and similarities between Italy's regional languages. In doing so, we also seek to uncover new insights into the relationships among these diverse yet closely related varieties, which may help linguists understand their interconnected evolution and regional development over time and space. To improve the discriminative ability of learned representations, we evaluate several supervised contrastive learning objectives, both as pre-training steps and additional fine-tuning objectives. Experimental evidence shows that pre-trained self-supervised models can effectively identify regions from speech recording. Additionally, incorporating contrastive objectives during fine-tuning improves classification accuracy and yields embeddings that distinctly separate regional varieties, demonstrating the value of combining self-supervised pre-training and contrastive learning for this task.
Related papers
- Understanding Cross-Lingual Alignment -- A Survey [52.572071017877704]
Cross-lingual alignment is the meaningful similarity of representations across languages in multilingual language models.
We survey the literature of techniques to improve cross-lingual alignment, providing a taxonomy of methods and summarising insights from throughout the field.
arXiv Detail & Related papers (2024-04-09T11:39:53Z) - Improving In-context Learning of Multilingual Generative Language Models with Cross-lingual Alignment [42.624862172666624]
We propose a simple yet effective cross-lingual alignment framework exploiting pairs of translation sentences.
It aligns the internal sentence representations across different languages via multilingual contrastive learning.
Experimental results show that even with less than 0.1 textperthousand of pre-training tokens, our alignment framework significantly boosts the cross-lingual abilities of generative language models.
arXiv Detail & Related papers (2023-11-14T11:24:08Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
This work will lay the foundation for furthering the field of dialectal NLP by laying out evident disparities and identifying possible pathways for addressing them through mindful data collection.
arXiv Detail & Related papers (2023-10-23T17:42:01Z) - Cross-lingual Lifelong Learning [53.06904052325966]
We present a principled Cross-lingual Continual Learning (CCL) evaluation paradigm.
We provide insights into what makes multilingual sequential learning particularly challenging.
The implications of this analysis include a recipe for how to measure and balance different cross-lingual continual learning desiderata.
arXiv Detail & Related papers (2022-05-23T09:25:43Z) - Phylogeny-Inspired Adaptation of Multilingual Models to New Languages [43.62238334380897]
We show how we can use language phylogenetic information to improve cross-lingual transfer leveraging closely related languages.
We perform adapter-based training on languages from diverse language families (Germanic, Uralic, Tupian, Uto-Aztecan) and evaluate on both syntactic and semantic tasks.
arXiv Detail & Related papers (2022-05-19T15:49:19Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
We generate language representation from multilingual pre-trained models and conduct linguistic analysis.
We cluster all the target languages into multiple groups and name each group as a representation sprachbund.
Experiments are conducted on cross-lingual benchmarks and significant improvements are achieved compared to strong baselines.
arXiv Detail & Related papers (2021-09-01T09:32:06Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
We use singular vector canonical correlation analysis to study what kind of information is induced from each source.
We observe that our representations embed typology and strengthen correlations with language relationships.
We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy.
arXiv Detail & Related papers (2020-04-30T16:25:39Z) - Identifying Distributional Perspective Differences from Colingual Groups [41.58939666949895]
A lack of mutual understanding among different groups about their perspectives on specific values or events may lead to uninformed decisions or biased opinions.
We study colingual groups and use language corpora as a proxy to identify their distributional perspectives.
We present a novel computational approach to learn shared understandings, and benchmark our method by building culturally-aware models for the English, Chinese, and Japanese languages.
arXiv Detail & Related papers (2020-04-10T08:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.