論文の概要: Automating Transfer of Robot Task Plans using Functorial Data Migrations
- arxiv url: http://arxiv.org/abs/2406.15961v1
- Date: Sat, 22 Jun 2024 23:35:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 19:43:16.050541
- Title: Automating Transfer of Robot Task Plans using Functorial Data Migrations
- Title(参考訳): ファンクリアルデータ移動を用いたロボットタスクプランの自動移動
- Authors: Angeline Aguinaldo, Evan Patterson, William Regli,
- Abstract要約: ファクタは、ソースドメインからターゲットドメインへのプランの転送に使用可能な、ドメインタイプと述語の間の構造化されたマップを提供する。
本稿では,AI2-THOR Kitchen環境と互換性のあるタスクプランを標準Blocksworldドメインから移行することで,このアプローチを実証する。
- 参考スコア(独自算出の注目度): 1.3608029726333342
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel approach to ontology-based robot plan transfer using functorial data migrations from category theory. Functors provide structured maps between domain types and predicates which can be used to transfer plans from a source domain to a target domain without the need for replanning. Unlike methods that create models for transferring specific plans, our approach can be applied to any plan within a given domain. We demonstrate this approach by transferring a task plan from the canonical Blocksworld domain to one compatible with the AI2-THOR Kitchen environment. In addition, we discuss practical applications that may enhance the adaptability of robotic task planning in general.
- Abstract(参考訳): 本稿では,圏論からの関数的データ移動を用いたオントロジーに基づくロボット計画伝達手法を提案する。
ファクタは、ソースドメインからターゲットドメインへのプランの転送に使用可能な、ドメインタイプと述語の間の構造化されたマップを提供する。
特定のプランを転送するためのモデルを作成する方法とは異なり、我々のアプローチは特定のドメイン内の任意の計画に適用できる。
本稿では,AI2-THOR Kitchen環境と互換性のあるタスクプランを標準Blocksworldドメインから移行することで,このアプローチを実証する。
さらに,ロボット作業計画の適応性を高めるための実践的応用についても論じる。
関連論文リスト
- Ask-before-Plan: Proactive Language Agents for Real-World Planning [68.08024918064503]
プロアクティブエージェントプランニングでは、ユーザエージェントの会話とエージェント環境のインタラクションに基づいて、言語エージェントが明確化のニーズを予測する必要がある。
本稿では,明確化,実行,計画の3つのエージェントからなる新しいマルチエージェントフレームワーク,Clarification-Execution-Planning(textttCEP)を提案する。
論文 参考訳(メタデータ) (2024-06-18T14:07:28Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
製造システムと自律ロボットの研究において、機械で解釈可能なシステム機能の仕様に「能力」という用語が用いられる。
セマンティック能力モデルから始めて、AI計画問題を自動的に生成するアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-14T10:37:34Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - A Planning Ontology to Represent and Exploit Planning Knowledge for Performance Efficiency [6.87593454486392]
我々は,エージェントを世界の初期状態から望ましい目標状態へ移動させる一連の行動を見つけることを目的として,自動計画の問題を考える。
利用可能なプランナと多様なプランナドメインが多数用意されていると仮定し、適切なプランナを特定し、ドメインのパフォーマンスを向上させるために活用できる不可欠な情報を持っている。
論文 参考訳(メタデータ) (2023-07-25T14:51:07Z) - Learning to Reason over Scene Graphs: A Case Study of Finetuning GPT-2
into a Robot Language Model for Grounded Task Planning [45.51792981370957]
本研究では,ロボットタスク計画における小クラス大規模言語モデル(LLM)の適用性について,計画立案者が順次実行するためのサブゴール仕様にタスクを分解することを学ぶことによって検討する。
本手法は,シーングラフとして表現される領域上でのLLMの入力に基づいて,人間の要求を実行可能なロボット計画に変換する。
本研究は,LLMに格納された知識を長期タスクプランニングに効果的に活用できることを示唆し,ロボット工学におけるニューロシンボリックプランニング手法の今後の可能性を示すものである。
論文 参考訳(メタデータ) (2023-05-12T18:14:32Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z) - Online Grounding of PDDL Domains by Acting and Sensing in Unknown
Environments [62.11612385360421]
本稿では,エージェントが異なるタスクを実行できるフレームワークを提案する。
機械学習モデルを統合して、感覚データを抽象化し、目標達成のためのシンボリックプランニング、ナビゲーションのためのパスプランニングを行う。
提案手法を,RGB-Dオンボードカメラ,GPS,コンパスなど,正確なシミュレーション環境で評価する。
論文 参考訳(メタデータ) (2021-12-18T21:48:20Z) - Differentiable Spatial Planning using Transformers [87.90709874369192]
本研究では、長距離空間依存を計画して行動を生成する障害マップを与えられた空間計画変換器(SPT)を提案する。
エージェントが地上の真理マップを知らない環境では、エンド・ツー・エンドのフレームワークで事前訓練されたSPTを利用する。
SPTは、操作タスクとナビゲーションタスクの両方のすべてのセットアップにおいて、最先端の差別化可能なプランナーよりも優れています。
論文 参考訳(メタデータ) (2021-12-02T06:48:16Z) - Distributed Mission Planning of Complex Tasks for Heterogeneous
Multi-Robot Teams [2.329625852490423]
異種多ロボットチームのための複雑なミッション計画のための分散多段階最適化手法を提案する。
提案手法は、ミッション目標を定義する階層木として表される、ミッションの多目的探索を含む。
提案手法は,利用可能なロボットと与えられた最適化基準に応じて,計画戦略に適応する能力を示す。
論文 参考訳(メタデータ) (2021-09-21T11:36:11Z) - Learning Symbolic Operators for Task and Motion Planning [29.639902380586253]
統合されたタスクとモーションプランナー(TAMP)は、モーションレベルの決定とタスクレベルの計画実現性の複雑な相互作用を処理します。
TAMPアプローチは、タスクレベルの検索を導くためにドメイン固有のシンボリック演算子に依存し、計画を効率的にします。
演算子学習のためのボトムアップリレーショナル学習法を提案し,TAMPシステムの計画に学習した演算子をどのように使用できるかを示す。
論文 参考訳(メタデータ) (2021-02-28T19:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。