Multitype entanglement dynamics induced by exceptional points
- URL: http://arxiv.org/abs/2406.16009v1
- Date: Sun, 23 Jun 2024 04:46:02 GMT
- Title: Multitype entanglement dynamics induced by exceptional points
- Authors: Zigeng Li, Xinyao Huang, Hongyan Zhu, Guofeng Zhang, Fan Wang, Xiaolan Zhong,
- Abstract summary: We find that diverse entanglement dynamics on the two sides of the fourth-order EP (EP4) and second-order EP (EP2) can be observed simultaneously.
Our study paves the way for the investigation of EP-induced quantum effects and applications of EP-related quantum technologies.
- Score: 9.033507137659411
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a most important feature of non-Hermitian systems, exceptional points (EPs) lead to a variety of unconventional phenomena and applications. Here we discover that multitype entanglement dynamics can be induced by engineering different orders of EP. By studying a generic model composed of two coupled non-Hermitian qubits, we find that diverse entanglement dynamics on the two sides of the fourth-order EP (EP4) and second-order EP (EP2) can be observed simultaneously in the weak coupling regime. With the increase of the coupling strength, the EP4 is replaced by an additional EP2, leading to the disappearance of the entanglement dynamics transition induced by EP4 in the strong coupling regime. Considering the case of Ising type interaction, we also realize EP-induced entanglement dynamics transition without the driving field. Our study paves the way for the investigation of EP-induced quantum effects and applications of EP-related quantum technologies.
Related papers
- Dynamic manifestation of exception points in a non-Hermitian continuous model with an imaginary periodic potential [0.0]
This study focuses on exceptional points (EPs) in continuous systems rather than discrete non-Hermitian systems.
The non-Hermiticity of the system stems from the local imaginary potential, which can be effectively achieved through particle loss.
Our investigation sheds light on EP behaviors, potentially catalyzing further exploration of EP phenomena across a variety of quantum simulation setups.
arXiv Detail & Related papers (2024-11-09T09:34:20Z) - Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories [103.95523007319937]
We study the dynamics of local excitations in a lattice of superconducting qubits.
For confined excitations, the magnetic field induces a tension in the string connecting them.
Our method allows us to experimentally image string dynamics in a (2+1)D LGT.
arXiv Detail & Related papers (2024-09-25T17:59:05Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Topological transitions in quantum jump dynamics: Hidden exceptional points [45.58759752275849]
Phenomena associated with exceptional points (EPs) have been extensively studied in relation to superconducting circuits.
We consider a monitored three level system and find multiple EPs in the Lindbladian eigenvalues considered as functions of a counting field.
We identify dynamical observables affected by these transitions and demonstrate how the underlying topology can be recovered from experimentally measured quantum jump distributions.
arXiv Detail & Related papers (2024-08-09T18:00:02Z) - Double exceptional points generated by the strong imaginary coupling of
a non-Hermitian Hamiltonian in an optical microcavity [1.6559869843284152]
We generate exceptional points (EPs) on two-level systems in a single microcavity by adopting the non-Hermitian coupling of a non-Hermitian Hamiltonian under the imaginary (dominant) coupling.
To generate multiple EPs, multiple levels or composite physical systems have been employed with Hermitian couplings.
arXiv Detail & Related papers (2022-08-14T14:36:46Z) - Higher-order exceptional point in a blue-detuned non-Hermitian cavity
optomechanical system [5.001077638364239]
We propose a non-Hermitian three-mode optomechanical system in the blue-sideband regime for predicting the third-order EP (EP3)
For the gain (loss) MR, we find only two degenerate EP3s or EP2s can be predicted by tuning enhanced coupling strength.
Our proposal provides a potential way to predict higher-order EPs or multiple EP2s and study multimode quantum squeezing around EPs.
arXiv Detail & Related papers (2022-05-15T05:20:59Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Observation of exceptional point in a PT broken non-Hermitian system
simulated using a quantum circuit [3.3229068574143534]
We propose an extendable method to simulate non-Hermitian systems on the quantum circuits.
Our model is capable of simulating large scale systems with higher-order EPs.
arXiv Detail & Related papers (2020-05-28T07:59:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.