Programmable simulation of high-order exceptional point with a trapped ion
- URL: http://arxiv.org/abs/2412.09776v1
- Date: Fri, 13 Dec 2024 01:00:22 GMT
- Title: Programmable simulation of high-order exceptional point with a trapped ion
- Authors: Yue Li, Yang Wu, Yuqi Zhou, Mengxiang Zhang, Xingyu Zhao, Yibo Yuan, Xu Cheng, Yi Li, Xi Qin, Xing Rong, Yiheng Lin, Jiangfeng Du,
- Abstract summary: We experimentally demonstrate a native programmable control to simulate a high-order non-Hermitian Hamiltonian in a multi-dimensional trapped ion system.
Our results pave the way for scalable quantum simulation of high-dimensional dissipative systems.
- Score: 20.656857180988926
- License:
- Abstract: The nontrivial degeneracies in non-Hermitian systems, exceptional points (EPs), have attracted extensive attention due to intriguing phenomena. Compared with commonly observed second-order EPs, high-order EPs show rich physics due to their extended dimension and parameter space, ranging from the coalescence of EPs into higher order to potential applications in topological properties. However, these features also pose challenges in controlling multiple coherent and dissipative elements in a scaled system. Here we experimentally demonstrate a native programmable control to simulate a high-order non-Hermitian Hamiltonian in a multi-dimensional trapped ion system. We simulate a series of non-Hermitian systems with varied parameters and observe the coalescence of second-order EPs into a fourth-order EP. Our results pave the way for scalable quantum simulation of high-dimensional dissipative systems and can be beneficial for the application of high-order EPs in quantum sensing and quantum control.
Related papers
- Topological transitions in quantum jump dynamics: Hidden exceptional points [45.58759752275849]
Phenomena associated with exceptional points (EPs) and their applications have been extensively studied.
We consider a monitored three level system and find multiple EPs in the Lindbladian eigenvalues considered as functions of a counting field.
We demonstrate that these EPs signify transitions between different topological classes.
arXiv Detail & Related papers (2024-08-09T18:00:02Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Measuring topological invariants for higher-order exceptional points in quantum three-mode systems [1.9334835720031431]
Experimental characterizations of exceptional topological invariants have been restricted to second-order EPs in classical or semiclassical systems.
We here propose an NH multi-mode system with higher-order EPs, each of which is underlain by a multifold-degenerate multipartite entangled eigenstate.
Our results extend research of exceptional topology to fully quantum-mechanical models with multipartite entangled eigenstates.
arXiv Detail & Related papers (2024-02-05T09:51:01Z) - Third-order exceptional line in a nitrogen-vacancy spin system [12.88459291396421]
The exceptional points (EPs) aroused from the non-Hermiticity bring rich phenomena, such as exceptional nodal topologies, unidirectional invisibility, single-mode lasing, sensitivity enhancement and energy harvesting.
Recently, high-order EP geometries are predicted to provide richer phenomena and advantages over stand-alone high-order EPs.
By introducing multiple symmetries, the emergence of the third-order exceptional line (EL) has been successfully realized with a single electron spin of nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2024-01-18T02:42:40Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Higher-order exceptional point in a blue-detuned non-Hermitian cavity
optomechanical system [5.001077638364239]
We propose a non-Hermitian three-mode optomechanical system in the blue-sideband regime for predicting the third-order EP (EP3)
For the gain (loss) MR, we find only two degenerate EP3s or EP2s can be predicted by tuning enhanced coupling strength.
Our proposal provides a potential way to predict higher-order EPs or multiple EP2s and study multimode quantum squeezing around EPs.
arXiv Detail & Related papers (2022-05-15T05:20:59Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Generating high-order quantum exceptional points in synthetic dimensions [0.0]
High-order exceptional points (EPs) can possess a number of intriguing properties related to, e.g., chiral transport and enhanced sensitivity.
Previous proposals to realize non-Hermitian Hamiltonians (NHHs) with high-order EPs have been mainly based on either direct construction of spatial networks of coupled modes.
Here, we introduce a simple and effective method for engineering NHHs with high-order quantum EPs.
arXiv Detail & Related papers (2021-02-26T18:50:21Z) - Observation of exceptional point in a PT broken non-Hermitian system
simulated using a quantum circuit [3.3229068574143534]
We propose an extendable method to simulate non-Hermitian systems on the quantum circuits.
Our model is capable of simulating large scale systems with higher-order EPs.
arXiv Detail & Related papers (2020-05-28T07:59:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.