TimeAutoDiff: Combining Autoencoder and Diffusion model for time series tabular data synthesizing
- URL: http://arxiv.org/abs/2406.16028v2
- Date: Mon, 15 Jul 2024 04:36:30 GMT
- Title: TimeAutoDiff: Combining Autoencoder and Diffusion model for time series tabular data synthesizing
- Authors: Namjoon Suh, Yuning Yang, Din-Yin Hsieh, Qitong Luan, Shirong Xu, Shixiang Zhu, Guang Cheng,
- Abstract summary: In this paper, we leverage the power of latent diffusion models to generate synthetic time series tabular data.
We tackle this problem by combining the ideas of the variational auto-encoder (VAE) and the denoising diffusion probabilistic model (DDPM)
Our model named as textttTimeAutoDiff has several key advantages including (1) Generality: the ability to handle the broad spectrum of time series data from single to multi-sequence datasets.
- Score: 13.385264002435145
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we leverage the power of latent diffusion models to generate synthetic time series tabular data. Along with the temporal and feature correlations, the heterogeneous nature of the feature in the table has been one of the main obstacles in time series tabular data modeling. We tackle this problem by combining the ideas of the variational auto-encoder (VAE) and the denoising diffusion probabilistic model (DDPM). Our model named as \texttt{TimeAutoDiff} has several key advantages including (1) Generality: the ability to handle the broad spectrum of time series tabular data from single to multi-sequence datasets; (2) Good fidelity and utility guarantees: numerical experiments on six publicly available datasets demonstrating significant improvements over state-of-the-art models in generating time series tabular data, across four metrics measuring fidelity and utility; (3) Fast sampling speed: entire time series data generation as opposed to the sequential data sampling schemes implemented in the existing diffusion-based models, eventually leading to significant improvements in sampling speed, (4) Entity conditional generation: the first implementation of conditional generation of multi-sequence time series tabular data with heterogenous features in the literature, enabling scenario exploration across multiple scientific and engineering domains. Codes are in preparation for release to the public, but available upon request.
Related papers
- TabDiff: a Multi-Modal Diffusion Model for Tabular Data Generation [91.50296404732902]
We introduce TabDiff, a joint diffusion framework that models all multi-modal distributions of tabular data in one model.
Our key innovation is the development of a joint continuous-time diffusion process for numerical and categorical data.
TabDiff achieves superior average performance over existing competitive baselines, with up to $22.5%$ improvement over the state-of-the-art model on pair-wise column correlation estimations.
arXiv Detail & Related papers (2024-10-27T22:58:47Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - Leveraging Priors via Diffusion Bridge for Time Series Generation [3.2066708654182743]
Time series generation is widely used in real-world applications such as simulation, data augmentation, and hypothesis test techniques.
diffusion models have emerged as the de facto approach for time series generation.
TimeBridge is a framework that enables flexible synthesis by leveraging diffusion bridges to learn the transport between chosen prior and data distributions.
arXiv Detail & Related papers (2024-08-13T06:47:59Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Time-series Transformer Generative Adversarial Networks [5.254093731341154]
We consider limitations posed specifically on time-series data and present a model that can generate synthetic time-series.
A model that generates synthetic time-series data has two objectives: 1) to capture the stepwise conditional distribution of real sequences, and 2) to faithfully model the joint distribution of entire real sequences.
We present TsT-GAN, a framework that capitalises on the Transformer architecture to satisfy the desiderata and compare its performance against five state-of-the-art models on five datasets.
arXiv Detail & Related papers (2022-05-23T10:04:21Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
Heterogeneity and irregularity of multi-source data sets present a significant challenge to time-series analysis.
In this work, we design a novel architecture, PIETS, to model heterogeneous time-series.
We show that PIETS is able to effectively model heterogeneous temporal data and outperforms other state-of-the-art approaches in the prediction task.
arXiv Detail & Related papers (2021-09-30T20:01:19Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
Time series is a special type of sequence data, a set of observations collected at even intervals of time and ordered chronologically.
Existing deep learning techniques use generic sequence models for time series analysis, which ignore some of its unique properties.
We propose a novel neural network architecture and apply it for the time series forecasting problem, wherein we conduct sample convolution and interaction at multiple resolutions for temporal modeling.
arXiv Detail & Related papers (2021-06-17T08:15:04Z) - Deep Time Series Models for Scarce Data [8.673181404172963]
Time series data have grown at an explosive rate in numerous domains and have stimulated a surge of time series modeling research.
Data scarcity is a universal issue that occurs in a vast range of data analytics problems.
arXiv Detail & Related papers (2021-03-16T22:16:54Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
We propose a novel probabilistic sequence model that excels at capturing high variability in time series data.
Our method uses temporal latent variables to capture information about the underlying data pattern.
The efficacy of the proposed method is demonstrated on a range of synthetic and real-world sequential data.
arXiv Detail & Related papers (2020-02-24T19:30:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.