論文の概要: Composite Material Design for Optimized Fracture Toughness Using Machine Learning
- arxiv url: http://arxiv.org/abs/2406.16166v1
- Date: Sun, 23 Jun 2024 17:01:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 18:44:41.964064
- Title: Composite Material Design for Optimized Fracture Toughness Using Machine Learning
- Title(参考訳): 機械学習を用いた最適破壊靭性のための複合材料設計
- Authors: Mohammad Naqizadeh Jahromi, Mohammad Ravandi,
- Abstract要約: 本稿では,機械学習(ML)技術を用いた2次元および3次元複合構造の最適化について検討する。
二重カンチレバービーム(Double Cantilever Beam, DCB)試験における破壊靭性とき裂進展に焦点を当てている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the optimization of 2D and 3D composite structures using machine learning (ML) techniques, focusing on fracture toughness and crack propagation in the Double Cantilever Beam (DCB) test. By exploring the intricate relationship between microstructural arrangements and macroscopic properties of composites, the study demonstrates the potential of ML as a powerful tool to expedite the design optimization process, offering notable advantages over traditional finite element analysis. The research encompasses four distinct cases, examining crack propagation and fracture toughness in both 2D and 3D composite models. Through the application of ML algorithms, the study showcases the capability for rapid and accurate exploration of vast design spaces in composite materials. The findings highlight the efficiency of ML in predicting mechanical behaviors with limited training data, paving the way for broader applications in composite design and optimization. This work contributes to advancing the understanding of ML's role in enhancing the efficiency of composite material design processes.
- Abstract(参考訳): 本稿では,機械学習(ML)技術を用いた2次元および3次元複合構造の最適化について検討し,Double Cantilever Beam(DCB)試験における破壊靭性とき裂進展に着目した。
マイクロ構造配置とコンポジットのマクロ特性の複雑な関係を探索することにより、MLが設計最適化プロセスの迅速化のための強力なツールとしての可能性を示し、従来の有限要素解析よりも顕著な優位性を示した。
本研究は, 2次元および3次元複合モデルにおいて, き裂伝播と破壊靭性について検討した。
MLアルゴリズムの適用を通じて、複合材料における広大な設計空間を迅速かつ正確に探索する能力を示す。
この結果は、限られたトレーニングデータによる機械的挙動の予測におけるMLの効率性を強調し、複合設計と最適化における幅広い応用への道を開いた。
本研究は,複合材料設計プロセスの効率化におけるMLの役割の理解の促進に寄与する。
関連論文リスト
- Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
本稿では,異なる標準化手法,(2)グラフ作成戦略,(3)補助的なタスクが性能,拡張性,対称性の強制に与える影響に焦点をあてる。
本研究の目的は,分子モデリングタスクに最適なモデリングコンポーネントの選択を研究者に案内することである。
論文 参考訳(メタデータ) (2024-07-11T09:04:12Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
我々は、様々な計算プリミティブから構築された新しいハイブリッドアーキテクチャを特定し、テストする。
本研究では,大規模計算最適法則と新しい状態最適スケーリング法則解析を用いて,結果のアーキテクチャを実験的に検証する。
我々は,MAD合成法と計算-最適パープレキシティを相関させ,新しいアーキテクチャの正確な評価を可能にする。
論文 参考訳(メタデータ) (2024-03-26T16:33:12Z) - Mechanical Characterization and Inverse Design of Stochastic Architected
Metamaterials Using Neural Operators [2.4918888803900727]
機械学習は、建築された材料の設計のための変革的なツールとして登場しつつある。
ここでは、ディープニューラル演算子(DeepONet)を活用した、エンドツーエンドの科学MLフレームワークを紹介する。
2光子リソグラフィーを用いて印刷した脊椎の微細構造から得られた結果,機械的応答の予測誤差が5~10%の範囲内であることが判明した。
論文 参考訳(メタデータ) (2023-11-23T05:23:15Z) - LS-DYNA Machine Learning-based Multiscale Method for Nonlinear Modeling
of Short Fiber-Reinforced Composites [7.891561501854125]
短繊維強化複合材料(英: short-fiber-reinforceed Composites、SFRC)は、自動車やエレクトロニクス産業における軽量構造応用のための高性能な工学材料である。
本研究では, 射出成形による微細構造, 材料均質化, 深層材料ネットワーク(DMN)を統合し, SFRCの構造解析を行う機械学習によるマルチスケール手法を提案する。
論文 参考訳(メタデータ) (2023-01-06T22:33:19Z) - Artificial intelligence approaches for materials-by-design of energetic
materials: state-of-the-art, challenges, and future directions [0.0]
我々は,AIによる材料設計の進歩とそのエネルギー材料への応用についてレビューする。
文献における手法を,少数のデータから学習する能力の観点から評価する。
本稿では,メタラーニング,アクティブラーニング,ベイズラーニング,半/弱教師付きラーニングなど,EM教材の今後の研究方向性について提案する。
論文 参考訳(メタデータ) (2022-11-15T14:41:11Z) - Data-driven multi-scale modeling and robust optimization of composite
structure with uncertainty quantification [0.42581756453559755]
この章では、先進的なデータ駆動手法を示し、先進的な複合材料をマルチスケールでモデリングするために開発・追加する能力について概説する。
代理モデル/エミュレータによって駆動される有限要素法(FEM)シミュレーションに基づく複合構造物のマルチスケールモデリング手法を提案する。
論文 参考訳(メタデータ) (2022-10-13T16:40:11Z) - A Supervised Machine Learning Approach for Accelerating the Design of
Particulate Composites: Application to Thermal Conductivity [0.0]
粒子状多機能複合材料の設計のための教師付き機械学習(ML)に基づく計算手法を提案する。
設計変数(英: design variables)は、材料のミクロ構造と材料の性質を直接リンクする物理的記述子である。
最適化ML法は, 生成データベース上で学習し, 構造と特性の複雑な関係を確立する。
論文 参考訳(メタデータ) (2020-09-30T18:18:00Z) - Performance Indicator in Multilinear Compressive Learning [106.12874293597754]
マルチリニア圧縮学習(MCL)フレームワークは,多次元信号を扱う際の知覚と学習のステップを効率的に最適化するために提案された。
本稿では,入力信号の分解能,圧縮された測定値数,MCLの学習性能の関係を解析する。
論文 参考訳(メタデータ) (2020-09-22T11:27:50Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
マルチリニア圧縮学習(MCL)フレームワークは、マルチリニア圧縮センシングと機械学習をエンドツーエンドシステムに統合する。
MCLの背後にある主要なアイデアは、下流学習タスクの信号から重要な特徴を捉えることのできるテンソル部分空間の存在を仮定することである。
本稿では、上記の要件、すなわち、関心の信号が分離可能なテンソル部分空間をどうやって見つけるかという、2つの要件に対処する新しい解決策を提案する。
論文 参考訳(メタデータ) (2020-02-17T19:06:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。