FS-RAG: A Frame Semantics Based Approach for Improved Factual Accuracy in Large Language Models
- URL: http://arxiv.org/abs/2406.16167v1
- Date: Sun, 23 Jun 2024 17:18:19 GMT
- Title: FS-RAG: A Frame Semantics Based Approach for Improved Factual Accuracy in Large Language Models
- Authors: Harish Tayyar Madabushi,
- Abstract summary: We present a novel extension to Retrieval Augmented Generation with the goal of mitigating factual inaccuracies in the output of large language models.
Our method draws on the cognitive linguistic theory of frame semantics for the indexing and retrieval of factual information relevant to helping large language models answer queries.
- Score: 2.1484130681985047
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a novel extension to Retrieval Augmented Generation with the goal of mitigating factual inaccuracies in the output of large language models. Specifically, our method draws on the cognitive linguistic theory of frame semantics for the indexing and retrieval of factual information relevant to helping large language models answer queries. We conduct experiments to demonstrate the effectiveness of this method both in terms of retrieval effectiveness and in terms of the relevance of the frames and frame relations automatically generated. Our results show that this novel mechanism of Frame Semantic-based retrieval, designed to improve Retrieval Augmented Generation (FS-RAG), is effective and offers potential for providing data-driven insights into frame semantics theory. We provide open access to our program code and prompts.
Related papers
- TrustRAG: An Information Assistant with Retrieval Augmented Generation [73.84864898280719]
TrustRAG is a novel framework that enhances acRAG from three perspectives: indexing, retrieval, and generation.
We open-source the TrustRAG framework and provide a demonstration studio designed for excerpt-based question answering tasks.
arXiv Detail & Related papers (2025-02-19T13:45:27Z) - G-Refer: Graph Retrieval-Augmented Large Language Model for Explainable Recommendation [48.23263809469786]
We propose a framework using graph retrieval-augmented large language models (LLMs) for explainable recommendation.
G-Refer achieves superior performance compared with existing methods in both explainability and stability.
arXiv Detail & Related papers (2025-02-18T06:42:38Z) - RALLRec: Improving Retrieval Augmented Large Language Model Recommendation with Representation Learning [24.28601381739682]
Large Language Models (LLMs) have been integrated into recommendation systems to enhance user behavior comprehension.
Existing RAG methods rely primarily on textual semantics and often fail to incorporate the most relevant items.
We propose Representation learning for retrieval-Augmented Large Language model Recommendation (RALLRec)
arXiv Detail & Related papers (2025-02-10T02:15:12Z) - Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
This work introduces the Align-SLM framework to enhance the semantic understanding of textless Spoken Language Models (SLMs)
Our approach generates multiple speech continuations from a given prompt and uses semantic metrics to create preference data for Direct Preference Optimization (DPO)
We evaluate the framework using ZeroSpeech 2021 benchmarks for lexical and syntactic modeling, the spoken version of the StoryCloze dataset for semantic coherence, and other speech generation metrics, including the GPT4-o score and human evaluation.
arXiv Detail & Related papers (2024-11-04T06:07:53Z) - Improving Pinterest Search Relevance Using Large Language Models [15.24121687428178]
We integrate Large Language Models (LLMs) into our search relevance model.
Our approach uses search queries alongside content representations that include captions extracted from a generative visual language model.
We distill from the LLM-based model into real-time servable model architectures and features.
arXiv Detail & Related papers (2024-10-22T16:29:33Z) - Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
We propose a retrieval augmented generation (RAG) framework backed by a large language model (LLM) to correct the output of a smaller model for the linguistic task of morphological glossing.
We leverage linguistic information to make up for the lack of data and trainable parameters, while allowing for inputs from written descriptive grammars interpreted and distilled through an LLM.
We show that a compact, RAG-supported model is highly effective in data-scarce settings, achieving a new state-of-the-art for this task and our target languages.
arXiv Detail & Related papers (2024-10-01T04:20:14Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.
Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)
We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - Prompt-based Logical Semantics Enhancement for Implicit Discourse
Relation Recognition [4.7938839332508945]
We propose a Prompt-based Logical Semantics Enhancement (PLSE) method for Implicit Discourse Relation Recognition (IDRR)
Our method seamlessly injects knowledge relevant to discourse relation into pre-trained language models through prompt-based connective prediction.
Experimental results on PDTB 2.0 and CoNLL16 datasets demonstrate that our method achieves outstanding and consistent performance against the current state-of-the-art models.
arXiv Detail & Related papers (2023-11-01T08:38:08Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.