論文の概要: A Mechanism for Optimizing Media Recommender Systems
- arxiv url: http://arxiv.org/abs/2406.16212v2
- Date: Mon, 22 Jul 2024 17:20:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 21:11:12.913029
- Title: A Mechanism for Optimizing Media Recommender Systems
- Title(参考訳): メディアレコメンダシステムの最適化機構
- Authors: Brian McFadden,
- Abstract要約: メディアソースがコスト関数におけるオーバーリーチの影響を考慮すると、最適な解決策が得られます。
各消費者に最適な分布を生成するための実用的なアルゴリズムを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: A mechanism is described that addresses the fundamental trade off between media producers who want to increase reach and consumers who provide attention based on the rate of utility received, and where overreach negatively impacts that rate. An optimal solution can be achieved when the media source considers the impact of overreach in a cost function used in determining the optimal distribution of content to maximize individual consumer utility and participation. The result is a Nash equilibrium between producer and consumer that is also Pareto efficient. Comparison with the literature on Recommender systems highlights the advantages of the mechanism, including identifying an optimal content volume for the consumer and improvements for optimizing with multiple objectives. A practical algorithm for generating the optimal distribution for each consumer is provided.
- Abstract(参考訳): あるメカニズムは、リーチを増やしたいメディアプロデューサと、受信したユーティリティ率に基づいて注意を向けるコンシューマーの基本的なトレードオフに対処し、過度にそのレートに悪影響を及ぼすメカニズムを記述している。
メディアソースが、個々の消費者ユーティリティと参加を最大化するためにコンテンツの最適分布を決定するのに使用されるコスト関数におけるオーバーリーチの影響を考慮すると、最適な解決策が得られる。
その結果は生産者と消費者のナッシュ均衡であり、パレートも効率的である。
Recommenderシステムに関する文献との比較では、コンシューマのための最適なコンテンツボリュームの特定や、複数の目的の最適化の改善など、このメカニズムの利点を強調している。
各消費者に最適な分布を生成するための実用的なアルゴリズムを提供する。
関連論文リスト
- Fair Allocation in Dynamic Mechanism Design [57.66441610380448]
競売業者が各ラウンドの買い手グループに、合計で$T$で分けない商品を販売している問題を考える。
競売人は、各グループの最低平均配分を保証する公正な制約に固執しつつ、割引された全体の収益を最大化することを目的としている。
論文 参考訳(メタデータ) (2024-05-31T19:26:05Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
各ユーザが事前に定義した機能であるユーティリティを導入し,BOのコストと性能のトレードオフについて述べる。
このアルゴリズムをLCデータセット上で検証した結果,従来のマルチファイルBOや転送BOベースラインよりも優れていた。
論文 参考訳(メタデータ) (2024-05-28T07:38:39Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
本稿では,学習からランクへの学習ループに,効率よく解ける公正ランキングモデルを組み込む方法について述べる。
特に,本論文は,OWA目標の制約された最適化を通じてバックプロパゲーションを行う方法を示す最初のものである。
論文 参考訳(メタデータ) (2024-02-07T20:53:53Z) - A Personalized Framework for Consumer and Producer Group Fairness
Optimization in Recommender Systems [13.89038866451741]
本稿では,CP-FairRankを提案する。CP-FairRankは,消費者と生産者の双方の公正性制約をシームレスに統合する最適化アルゴリズムである。
提案手法は, 消費者および生産者の公正性を, 全体的な推薦品質を損なうことなく向上させることができることを示す。
論文 参考訳(メタデータ) (2024-02-01T10:42:05Z) - Interactive Hyperparameter Optimization in Multi-Objective Problems via
Preference Learning [65.51668094117802]
我々は多目的機械学習(ML)に適した人間中心型対話型HPO手法を提案する。
ユーザが自分のニーズに最も適した指標を推測する代わりに、私たちのアプローチは自動的に適切な指標を学習します。
論文 参考訳(メタデータ) (2023-09-07T09:22:05Z) - CPFair: Personalized Consumer and Producer Fairness Re-ranking for
Recommender Systems [5.145741425164946]
本稿では,消費者側と生産側の両方から公平性制約をシームレスに統合する最適化に基づく再ランク付け手法を提案する。
提案手法は, 消費者と生産者の公正性を両立させ, 全体的な推奨品質を低下させることなく向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-17T20:38:02Z) - Exploring Customer Price Preference and Product Profit Role in
Recommender Systems [0.4724825031148411]
我々は,レコメンデーションシステムの利益意識を操作する効果を示す。
本稿では,スコアベースのレコメンデータシステムにおいて,予測ランキングの調整を提案する。
実験では、精度と生成したレコメンデーションの利益の両方を改善する能力を示す。
論文 参考訳(メタデータ) (2022-03-13T12:08:06Z) - Optimizer Amalgamation [124.33523126363728]
私たちは、Amalgamationという新しい問題の研究を動機付けています。"Teacher"アマルガメーションのプールを、より強力な問題固有のパフォーマンスを持つ単一の"学生"にどのように組み合わせるべきなのでしょうか?
まず、勾配降下による解析のプールをアマルガメートする3つの異なるメカニズムを定義する。
また, プロセスの分散を低減するため, 目標を摂動させることでプロセスの安定化を図る。
論文 参考訳(メタデータ) (2022-03-12T16:07:57Z) - Sequential Information Design: Markov Persuasion Process and Its
Efficient Reinforcement Learning [156.5667417159582]
本稿では,逐次情報設計の新たなモデル,すなわちマルコフ説得過程(MPP)を提案する。
MPPのプランニングは、ミオピックレシーバーに同時に説得されるシグナルポリシーを見つけ、送信者の最適な長期累積ユーティリティを誘導する、というユニークな課題に直面している。
我々は,楽観主義と悲観主義の両原理の新たな組み合わせを特徴とする,実証可能な効率のよい非回帰学習アルゴリズム,Optimism-Pessimism Principle for Persuasion Process (OP4) を設計する。
論文 参考訳(メタデータ) (2022-02-22T05:41:43Z) - Using Stable Matching to Optimize the Balance between Accuracy and
Diversity in Recommendation [3.0938904602244355]
多くのレコメンデーションドメインにおいて、集約的多様性(あるいはカタログカバレッジ)の増加はシステムレベルの重要な目標である。
集約の多様性を高める試みは、エンドユーザの推奨精度を低下させる。
本稿では,ユーザとアイテムの両ユーティリティを考慮した,双方向のポストプロセッシング手法を提案する。
論文 参考訳(メタデータ) (2020-06-05T22:12:25Z) - Heterogeneous Causal Learning for Effectiveness Optimization in User
Marketing [2.752817022620644]
本稿では,ユーザマーケティングのための処理効果最適化手法を提案する。
このアルゴリズムは過去の実験から学習し、ユーザ選択に対するコスト効率の最適化に新しい最適化手法を利用する。
提案手法は,先行技術およびベースライン法において,最良性能の手法と比較して24.6%性能が向上した。
論文 参考訳(メタデータ) (2020-04-21T01:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。