論文の概要: Feature-prompting GBMSeg: One-Shot Reference Guided Training-Free Prompt Engineering for Glomerular Basement Membrane Segmentation
- arxiv url: http://arxiv.org/abs/2406.16271v1
- Date: Mon, 24 Jun 2024 02:33:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 16:22:56.102344
- Title: Feature-prompting GBMSeg: One-Shot Reference Guided Training-Free Prompt Engineering for Glomerular Basement Membrane Segmentation
- Title(参考訳): GBMSeg:糸状基底膜セグメンテーションのためのワンショット基準トレーニングフリープロンプトエンジニアリング
- Authors: Xueyu Liu, Guangze Shi, Rui Wang, Yexin Lai, Jianan Zhang, Lele Sun, Quan Yang, Yongfei Wu, MIng Li, Weixia Han, Wen Zheng,
- Abstract要約: 透過電子顕微鏡(TEM)における糸球体基底膜(GBM)の評価は慢性腎疾患(CKD)の診断に重要である
GBMSegは1ショットの注釈付き参照だけでガイドされたTEM画像にGBMを自動的に分割する訓練不要のフレームワークである。
- 参考スコア(独自算出の注目度): 14.973938440706377
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Assessment of the glomerular basement membrane (GBM) in transmission electron microscopy (TEM) is crucial for diagnosing chronic kidney disease (CKD). The lack of domain-independent automatic segmentation tools for the GBM necessitates an AI-based solution to automate the process. In this study, we introduce GBMSeg, a training-free framework designed to automatically segment the GBM in TEM images guided only by a one-shot annotated reference. Specifically, GBMSeg first exploits the robust feature matching capabilities of the pretrained foundation model to generate initial prompt points, then introduces a series of novel automatic prompt engineering techniques across the feature and physical space to optimize the prompt scheme. Finally, GBMSeg employs a class-agnostic foundation segmentation model with the generated prompt scheme to obtain accurate segmentation results. Experimental results on our collected 2538 TEM images confirm that GBMSeg achieves superior segmentation performance with a Dice similarity coefficient (DSC) of 87.27% using only one labeled reference image in a training-free manner, outperforming recently proposed one-shot or few-shot methods. In summary, GBMSeg introduces a distinctive automatic prompt framework that facilitates robust domain-independent segmentation performance without training, particularly advancing the automatic prompting of foundation segmentation models for medical images. Future work involves automating the thickness measurement of segmented GBM and quantifying pathological indicators, holding significant potential for advancing pathology assessments in clinical applications. The source code is available on https://github.com/SnowRain510/GBMSeg
- Abstract(参考訳): 透過電子顕微鏡(TEM)における糸球体基底膜(GBM)の評価は慢性腎疾患(CKD)の診断に重要である。
GBMにドメインに依存しない自動セグメンテーションツールがないため、プロセスを自動化するにはAIベースのソリューションが必要である。
本研究では,1ショットの注釈付き参照のみをガイドしたTEM画像にGBMを自動的に分割する訓練自由フレームワークであるGBMSegを紹介する。
具体的には、GBMSegは、まず、事前訓練された基礎モデルの堅牢な特徴マッチング機能を利用して初期プロンプトポイントを生成し、続いて、プロンプトスキームを最適化するために、特徴と物理空間をまたいだ一連の新しい自動プロンプトエンジニアリング技術を導入する。
最後に、GBMSegは、生成したプロンプトスキームとクラスに依存しない基礎セグメンテーションモデルを用いて、正確なセグメンテーション結果を得る。
収集した2538 TEM画像による実験結果から,GBMSeg は Dice similarity coefficient (DSC) 87.27% のセグメンテーション性能を,1つのラベル付き参照画像のみをトレーニング不要で達成し,最近提案された単発または少数発の手法よりも優れていたことが確認された。
要約すると、GBMSegは、トレーニングなしで堅牢なドメイン非依存セグメンテーション性能、特に医用画像のファンデーションセグメンテーションモデルの自動プロンプトを促進する、独特な自動プロンプトフレームワークを導入している。
今後の研究は、セグメント化されたGBMの厚さ測定を自動化し、病理指標を定量化し、臨床応用における病理学的評価を前進させる重要な可能性を秘めている。
ソースコードはhttps://github.com/SnowRain510/GBMSegで入手できる。
関連論文リスト
- Bridge the Points: Graph-based Few-shot Segment Anything Semantically [79.1519244940518]
プレトレーニング技術の最近の進歩により、視覚基礎モデルの能力が向上した。
最近の研究はSAMをFew-shot Semantic segmentation (FSS)に拡張している。
本稿では,グラフ解析に基づく簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-10-09T15:02:28Z) - SAM-Driven Weakly Supervised Nodule Segmentation with Uncertainty-Aware Cross Teaching [13.5553526185399]
自動結節分割は超音波画像におけるコンピュータ支援診断に不可欠である。
近年、SAMのようなセグメンテーション基礎モデルは、自然画像に顕著な一般化性を示している。
本研究では, セグメンテーション基盤モデルを利用して擬似ラベルを生成する, 弱教師付きフレームワークを考案する。
論文 参考訳(メタデータ) (2024-07-18T14:27:54Z) - Pathological Primitive Segmentation Based on Visual Foundation Model with Zero-Shot Mask Generation [3.5177988631063486]
本稿では,SAMの学習済み自然画像エンコーダを検出ベース領域提案に適用する手法を提案する。
SAMというベースフレームワーク全体は、追加のトレーニングや微調整を必要としないが、病理学における2つの基本的なセグメンテーションタスクに対してエンドツーエンドの結果をもたらす可能性がある。
論文 参考訳(メタデータ) (2024-04-12T16:29:49Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - Improving Generalization Capability of Deep Learning-Based Nuclei
Instance Segmentation by Non-deterministic Train Time and Deterministic Test
Time Stain Normalization [0.674572634849505]
核のインスタンスセグメンテーションは、幅広い臨床および研究応用において、基本的な役割を果たす。
ディープラーニング(DL)ベースのアプローチは、最高のパフォーマンスを提供するために示されています。
本稿では,DLに基づく自動セグメンテーション手法の一般化能力向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-09-12T11:29:35Z) - Interactive Segmentation as Gaussian Process Classification [58.44673380545409]
クリックベースのインタラクティブセグメンテーション(IS)は、ユーザインタラクション下で対象オブジェクトを抽出することを目的としている。
現在のディープラーニング(DL)ベースの手法のほとんどは、主にセマンティックセグメンテーションの一般的なパイプラインに従っている。
本稿では,各画像上でガウス過程(GP)に基づく画素単位のバイナリ分類モデルとしてISタスクを定式化することを提案する。
論文 参考訳(メタデータ) (2023-02-28T14:01:01Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
2つの医用画像データセットのセマンティックセグメンテーションにパラメータ効率が良いが効果的な適応を実現するために,いくつかのコントリビューションを提案し,検討する。
我々はこのアーキテクチャを、オンライン生成プロトタイプへの割り当てに基づく専用密集型セルフスーパービジョンスキームで事前訓練する。
得られたニューラルネットワークモデルにより、完全に微調整されたモデルとパラメータに適応したモデルとのギャップを緩和できることを実証する。
論文 参考訳(メタデータ) (2022-11-16T21:55:05Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Accurate Cell Segmentation in Digital Pathology Images via Attention
Enforced Networks [0.0]
本研究では,グローバルな依存関係と重み付きチャネルを適応的に統合するアテンション強化ネットワーク(AENet)を提案する。
実験段階では, 染色変化問題に対処するために, 個々の色正規化法を提案する。
論文 参考訳(メタデータ) (2020-12-14T03:39:33Z) - Brain Stroke Lesion Segmentation Using Consistent Perception Generative
Adversarial Network [22.444373004248217]
半教師型脳卒中病変分類において, CPGAN(Consistent Perception Generative Adversarial Network)を提案する。
類似接続モジュール (SCM) は、マルチスケール機能の情報をキャプチャするように設計されている。
識別者が有意義な特徴表現を学習するように促すために、補助ネットワークを構築する。
論文 参考訳(メタデータ) (2020-08-30T07:42:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。