論文の概要: Multimodal Graph Benchmark
- arxiv url: http://arxiv.org/abs/2406.16321v1
- Date: Mon, 24 Jun 2024 05:14:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 16:03:25.287966
- Title: Multimodal Graph Benchmark
- Title(参考訳): マルチモーダルグラフベンチマーク
- Authors: Jing Zhu, Yuhang Zhou, Shengyi Qian, Zhongmou He, Tong Zhao, Neil Shah, Danai Koutra,
- Abstract要約: マルチモーダルグラフベンチマーク(Multimodal Graph Benchmark、MM-GRAPH)は、テキスト情報と視覚情報の両方を組み込んだ総合的なマルチモーダルグラフベンチマークである。
MM-GRAPHは5つのグラフ学習データセットから構成されており、異なる学習タスクに適している。
MM-GRAPHは、マルチモーダルグラフ学習の研究を促進し、より高度で堅牢なグラフ学習アルゴリズムの開発を促進することを目的としている。
- 参考スコア(独自算出の注目度): 36.75510196380185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Associating unstructured data with structured information is crucial for real-world tasks that require relevance search. However, existing graph learning benchmarks often overlook the rich semantic information associate with each node. To bridge such gap, we introduce the Multimodal Graph Benchmark (MM-GRAPH), the first comprehensive multi-modal graph benchmark that incorporates both textual and visual information. MM-GRAPH surpasses previous efforts, which have primarily focused on text-attributed graphs with various connectivity patterns. MM-GRAPH consists of five graph learning datasets of various scales that are appropriate for different learning tasks. Their multimodal node features, enabling a more comprehensive evaluation of graph learning algorithms in real-world scenarios. To facilitate research on multimodal graph learning, we further provide an extensive study on the performance of various graph neural networks in the presence of features from various modalities. MM-GRAPH aims to foster research on multimodal graph learning and drive the development of more advanced and robust graph learning algorithms. By providing a diverse set of datasets and benchmarks, MM-GRAPH enables researchers to evaluate and compare their models in realistic settings, ultimately leading to improved performance on real-world applications that rely on multimodal graph data.
- Abstract(参考訳): 構造化された情報と非構造化されたデータを関連付けることは、関連検索を必要とする現実世界のタスクに不可欠である。
しかし、既存のグラフ学習ベンチマークは、各ノードに関連するリッチなセマンティック情報を見落としていることが多い。
このようなギャップを埋めるために、テキスト情報と視覚情報の両方を組み込んだ最初の総合的なマルチモーダルグラフベンチマークであるMultimodal Graph Benchmark(MM-GRAPH)を導入する。
MM-GRAPHは、主に様々な接続パターンを持つテキスト分散グラフに焦点を当てた、これまでの取り組みを超越している。
MM-GRAPHは5つのグラフ学習データセットから構成されており、異なる学習タスクに適している。
マルチモーダルノードは、実際のシナリオにおけるグラフ学習アルゴリズムのより包括的な評価を可能にする。
マルチモーダルグラフ学習の研究を容易にするため,様々なモーダル特徴が存在する場合に,様々なグラフニューラルネットワークの性能について広範な研究を行う。
MM-GRAPHは、マルチモーダルグラフ学習の研究を促進し、より高度で堅牢なグラフ学習アルゴリズムの開発を促進することを目的としている。
さまざまなデータセットとベンチマークを提供することで、MM-GRAPHは、研究者が現実的な設定でモデルを評価および比較することが可能となり、最終的にはマルチモーダルグラフデータに依存する実世界のアプリケーションのパフォーマンスが改善される。
関連論文リスト
- When Graph meets Multimodal: Benchmarking on Multimodal Attributed Graphs Learning [36.6581535146878]
マルチモーダル属性グラフ(MAG)は、様々な現実世界のシナリオで一般的であり、一般的に2種類の知識を含んでいる。
プレトレーニング言語/視覚モデル(PLM/PVM)とグラフニューラルネットワーク(GNN)の最近の進歩は、MAGの効果的な学習を促進する。
本稿では、MAGのベンチマークデータセットの総合的かつ多種多様なコレクションであるMultimodal Attribute Graph Benchmark(MAGB)を提案する。
論文 参考訳(メタデータ) (2024-10-11T13:24:57Z) - Exploring Graph Structure Comprehension Ability of Multimodal Large Language Models: Case Studies [7.067145619709089]
本研究では,グラフの可視化が大規模言語モデル(LLM)の性能に与える影響について検討する。
本実験は,純粋テキストグラフ表現に対するマルチモーダルアプローチの有効性を比較した。
論文 参考訳(メタデータ) (2024-09-13T14:26:58Z) - Representation learning in multiplex graphs: Where and how to fuse
information? [5.0235828656754915]
多重グラフはよりリッチな情報を持ち、より良いモデリング機能を提供し、潜在的に異なるソースからより詳細なデータを統合する。
本稿では,マルチプレックスネットワークにおけるノードの表現を教師なしあるいは自己管理的に学習する問題に対処する。
多重グラフを扱うGNNアーキテクチャの構築方法の改善を提案する。
論文 参考訳(メタデータ) (2024-02-27T21:47:06Z) - Learning on Multimodal Graphs: A Survey [6.362513821299131]
マルチモーダルデータは医療、ソーシャルメディア、交通など様々な領域に及んでいる。
マルチモーダルグラフ学習(MGL)は、人工知能(AI)アプリケーションの成功に不可欠である。
論文 参考訳(メタデータ) (2024-02-07T23:50:00Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
本稿では,画像エンコーディングとマルチモーダル技術を統合することで,グラフデータの理解と推論を行う新しいパラダイムを提案する。
このアプローチは, GPT-4Vの高度な機能を利用して, 命令応答形式によるグラフデータの理解を可能にする。
研究は、このパラダイムを様々なグラフタイプで評価し、特に中国のOCRパフォーマンスと複雑な推論タスクにおいて、モデルの強みと弱みを強調した。
論文 参考訳(メタデータ) (2023-12-16T08:14:11Z) - MMGA: Multimodal Learning with Graph Alignment [8.349066399479938]
本稿では,グラフ(ソーシャルネットワーク)や画像,テキストなどの情報をソーシャルメディアに組み込むための,新しいマルチモーダル事前学習フレームワークMMGAを提案する。
MMGAでは,画像とテキストエンコーダを最適化するために,多段階のグラフアライメント機構が提案されている。
われわれのデータセットは、グラフ付き初のソーシャルメディアマルチモーダルデータセットであり、将来の研究を促進するために200万の投稿に基づいて特定のトピックをラベル付けした6万人のユーザーからなる。
論文 参考訳(メタデータ) (2022-10-18T15:50:31Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
グラフニューラルネットワークは多くのグラフレベルのタスクの主要なアーキテクチャとして登場した。
グラフプーリングは、グラフ全体の全体的グラフレベル表現を得るためには不可欠である。
論文 参考訳(メタデータ) (2022-04-15T04:02:06Z) - Group Contrastive Self-Supervised Learning on Graphs [101.45974132613293]
グラフ上での自己教師型学習をコントラッシブ手法を用いて研究する。
複数の部分空間におけるグラフの対比により、グラフエンコーダはより豊富な特徴を捉えることができる。
論文 参考訳(メタデータ) (2021-07-20T22:09:21Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
グラフ組み込み数ショット学習に関する包括的な研究を紹介します。
本稿では,ラベル間のグラフ情報の組み込みによる影響をより深く理解できるグラフ正規化手法を提案する。
提案手法は,Mini-ImageNetで最大2%,ImageNet-FSで6.7%の性能向上を実現する。
論文 参考訳(メタデータ) (2021-02-14T05:28:13Z) - Multi-view Graph Learning by Joint Modeling of Consistency and
Inconsistency [65.76554214664101]
グラフ学習は、複数のビューから統一的で堅牢なグラフを学ぶ能力を備えた、マルチビュークラスタリングのための有望なテクニックとして登場した。
本稿では,統合目的関数における多視点一貫性と多視点不整合を同時にモデル化する,新しい多視点グラフ学習フレームワークを提案する。
12のマルチビューデータセットに対する実験は、提案手法の堅牢性と効率性を実証した。
論文 参考訳(メタデータ) (2020-08-24T06:11:29Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。