論文の概要: Lesion-Aware Cross-Phase Attention Network for Renal Tumor Subtype Classification on Multi-Phase CT Scans
- arxiv url: http://arxiv.org/abs/2406.16322v1
- Date: Mon, 24 Jun 2024 05:15:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 16:03:25.285291
- Title: Lesion-Aware Cross-Phase Attention Network for Renal Tumor Subtype Classification on Multi-Phase CT Scans
- Title(参考訳): 多相CTスキャンを用いた腎腫瘍サブタイプ分類のための病変認識型クロスパス注意ネットワーク
- Authors: Kwang-Hyun Uhm, Seung-Won Jung, Sung-Hoo Hong, Sung-Jea Ko,
- Abstract要約: 腎癌の術前診断にはCT(multi-phase Computed Tomography)が広く用いられている。
深層学習に基づくアプローチは、最近腎臓癌の鑑別診断のために研究されているが、ネットワーク設計におけるCTフェーズ間の関係を明示的にモデル化するものではない。
腎病変のCT位相間の時間的依存性を効果的に把握できる新しい病変認識型クロスフェーズアテンションネットワーク (LACPANet) を提案する。
- 参考スコア(独自算出の注目度): 17.708032663036512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-phase computed tomography (CT) has been widely used for the preoperative diagnosis of kidney cancer due to its non-invasive nature and ability to characterize renal lesions. However, since enhancement patterns of renal lesions across CT phases are different even for the same lesion type, the visual assessment by radiologists suffers from inter-observer variability in clinical practice. Although deep learning-based approaches have been recently explored for differential diagnosis of kidney cancer, they do not explicitly model the relationships between CT phases in the network design, limiting the diagnostic performance. In this paper, we propose a novel lesion-aware cross-phase attention network (LACPANet) that can effectively capture temporal dependencies of renal lesions across CT phases to accurately classify the lesions into five major pathological subtypes from time-series multi-phase CT images. We introduce a 3D inter-phase lesion-aware attention mechanism to learn effective 3D lesion features that are used to estimate attention weights describing the inter-phase relations of the enhancement patterns. We also present a multi-scale attention scheme to capture and aggregate temporal patterns of lesion features at different spatial scales for further improvement. Extensive experiments on multi-phase CT scans of kidney cancer patients from the collected dataset demonstrate that our LACPANet outperforms state-of-the-art approaches in diagnostic accuracy.
- Abstract(参考訳): 多相CTは,非侵襲性および腎病変を特徴付ける能力から,腎癌の術前診断に広く用いられている。
しかし, 病変の種類が同じであっても, CT 相にわたる腎病変の増悪パターンが異なるため, 臨床検診医による視力評価は, サーバ間変動に悩まされる。
近年, 深層学習による腎癌の鑑別診断が検討されているが, ネットワーク設計におけるCT位相間の関係を明示的にモデル化することはなく, 診断性能が制限されている。
本稿では, 病変を時系列多相CT画像から5つの病型に正確に分類し, 腎病変の経時的依存関係をCTフェーズ間で効果的に把握できる新しい病変認識型クロスフェーズアテンションネットワーク (LACPANet) を提案する。
強調パターンの位相間関係を記述した注意重みを推定するために, 有効3次元病変の特徴を学習するために, 位相間病変認識機構を導入する。
また,異なる空間スケールで病変の特徴の時間的パターンを捕捉・集約し,さらなる改善を図るためのマルチスケールアテンション方式を提案する。
LACPANetは診断精度において最先端のアプローチよりも優れていることを示す。
関連論文リスト
- Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
CTスキャナーモデルと取得プロトコルのバリエーションは、抽出した放射能特性に有意な変動をもたらす。
LTDiff++は医療画像の特徴抽出を強化するために設計されたマルチスケール潜在拡散モデルである。
論文 参考訳(メタデータ) (2024-10-05T02:13:57Z) - From Diagnostic CT to DTI Tractography labels: Using Deep Learning for Corticospinal Tract Injury Assessment and Outcome Prediction in Intracerebral Haemorrhage [1.2180046815010375]
脳卒中後の運動回復には,皮質脊髄路(CST)の保存が重要である。
非造影CTは、ほとんどの脳内出血診断パイプラインで日常的に利用可能である。
57%のDice類似度係数でCSTの拡散型トラクトグラフィーマップを再現した。
論文 参考訳(メタデータ) (2024-08-12T13:34:26Z) - CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
肺がんサブタイプを多次元・多モード画像で正確に分類するための新しい深層学習ネットワークを提案する。
提案モデルの強みは, 対のCT-病理画像セットと独立のCT画像セットの両方を動的に処理できることにある。
また,ネットワーク学習を通じてモダリティ関係を定量的にマッピングするコントラスト制約モジュールも開発した。
論文 参考訳(メタデータ) (2024-07-18T01:42:00Z) - Diagnosis Of Takotsubo Syndrome By Robust Feature Selection From The
Complex Latent Space Of DL-based Segmentation Network [4.583480375083946]
医学における分類モデルやセグメンテーションモデルを用いて、潜伏した特徴を学習し、堅牢な特徴選択をオプトアウトし、過度な適合につながる可能性がある。
本稿では,診断を支援するセグメンテーションモデルの潜在空間を用いた特徴選択手法を提案する。
診断精度82%が従来のSOTA (State-of-the-art) を上回り, 心疾患の鑑別診断に有用であった。
論文 参考訳(メタデータ) (2023-12-19T22:53:32Z) - A Unified Multi-Phase CT Synthesis and Classification Framework for
Kidney Cancer Diagnosis with Incomplete Data [18.15801599933636]
非完全多相CTを用いた腎癌診断のための統合的枠組みを提案する。
同時に、欠落したCT画像を復元し、完了した画像セットを使用して癌サブタイプを分類する。
提案するフレームワークは,完全な3次元畳み込みニューラルネットワークに基づいている。
論文 参考訳(メタデータ) (2023-12-09T11:34:14Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
超高分解能超音波局在顕微鏡は毛細血管レベルでの微小血管のイメージングを可能にする。
この作業では、これらの課題に対処するために、信号構造を効果的に活用するディープニューラルネットワークアーキテクチャを使用します。
トレーニングしたネットワークを利用することで,従来のPSF知識を必要とせず,UCAの分離性も必要とせず,短時間で微小血管構造を復元する。
論文 参考訳(メタデータ) (2021-07-12T09:04:20Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
最近、コロナウイルス病2019(COVID-19)の流行は世界中で急速に広まっている。
多くの患者と医師の重労働のために、機械学習アルゴリズムによるコンピュータ支援診断が緊急に必要である。
本研究では,CT画像から抽出した一連の特徴を用いて,COVID-19の診断を行うことを提案する。
論文 参考訳(メタデータ) (2020-05-06T15:19:15Z) - Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble [77.5625174267105]
膵管腺癌(PDAC)は最も致命的ながんの1つである。
複数のフェーズは単一のフェーズよりも多くの情報を提供するが、それらは整列せず、テクスチャにおいて不均一である。
PDAC検出性能を高めるために,これらすべてのアライメントのアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-03-18T19:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。