論文の概要: From Diagnostic CT to DTI Tractography labels: Using Deep Learning for Corticospinal Tract Injury Assessment and Outcome Prediction in Intracerebral Haemorrhage
- arxiv url: http://arxiv.org/abs/2408.06403v1
- Date: Mon, 12 Aug 2024 13:34:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 19:38:59.944432
- Title: From Diagnostic CT to DTI Tractography labels: Using Deep Learning for Corticospinal Tract Injury Assessment and Outcome Prediction in Intracerebral Haemorrhage
- Title(参考訳): 診断CTからDTIトラクトグラフィー・ラベルへ: 深層学習による脊髄損傷の評価と脳内出血の予後予測
- Authors: Olivia N Murray, Hamied Haroon, Paul Ryu, Hiren Patel, George Harston, Marieke Wermer, Wilmar Jolink, Daniel Hanley, Catharina Klijn, Ulrike Hammerbeck, Adrian Parry-Jones, Timothy Cootes,
- Abstract要約: 脳卒中後の運動回復には,皮質脊髄路(CST)の保存が重要である。
非造影CTは、ほとんどの脳内出血診断パイプラインで日常的に利用可能である。
57%のDice類似度係数でCSTの拡散型トラクトグラフィーマップを再現した。
- 参考スコア(独自算出の注目度): 1.2180046815010375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The preservation of the corticospinal tract (CST) is key to good motor recovery after stroke. The gold standard method of assessing the CST with imaging is diffusion tensor tractography. However, this is not available for most intracerebral haemorrhage (ICH) patients. Non-contrast CT scans are routinely available in most ICH diagnostic pipelines, but delineating white matter from a CT scan is challenging. We utilise nnU-Net, trained on paired diagnostic CT scans and high-directional diffusion tractography maps, to segment the CST from diagnostic CT scans alone, and we show our model reproduces diffusion based tractography maps of the CST with a Dice similarity coefficient of 57%. Surgical haematoma evacuation is sometimes performed after ICH, but published clinical trials to date show that whilst surgery reduces mortality, there is no evidence of improved functional recovery. Restricting surgery to patients with an intact CST may reveal a subset of patients for whom haematoma evacuation improves functional outcome. We investigated the clinical utility of our model in the MISTIE III clinical trial dataset. We found that our model's CST integrity measure significantly predicted outcome after ICH in the acute and chronic time frames, therefore providing a prognostic marker for patients to whom advanced diffusion tensor imaging is unavailable. This will allow for future probing of subgroups who may benefit from surgery.
- Abstract(参考訳): 脳卒中後の運動回復には,皮質脊髄路(CST)の保存が重要である。
CSTをイメージングで評価する金標準法は拡散テンソルトラクトグラフィである。
しかし、ほとんどの脳内出血(ICH)患者には使用できない。
非コントラストCTは、ほとんどのICC診断パイプラインで定期的に利用可能であるが、CTスキャンから白色物質を抽出することは困難である。
我々は,診断CTスキャンと高方向拡散トラクトグラフィーマップを併用して訓練したnnU-Netを用いて,診断CTスキャンのみからCSTを分割し,Dice類似度係数57%でCSTの拡散に基づくトラクトグラフィーマップを再現することを示した。
外科的血腫除去はICH後に行われることがあるが、現在までに臨床試験が公開されており、手術中は死亡率を低下させるが、機能回復の改善の証拠はない。
無傷のCST患者に対する手術の制限は、血腫除去が機能的改善をもたらす患者のサブセットを明らかにする可能性がある。
MISTIE III 臨床試験データセットを用いて,本モデルの臨床的有用性を検討した。
急性期および慢性期におけるICC後のCST整合性は有意に予測され,高度な拡散テンソルイメージングが不可能な患者に予後指標が得られた。
これにより、手術の恩恵を受ける可能性のあるサブグループの将来の調査が可能になる。
関連論文リスト
- Multimodal Learning With Intraoperative CBCT & Variably Aligned Preoperative CT Data To Improve Segmentation [0.21847754147782888]
コーンビームCT(CBCT)はコンピュータ支援による介入を促進する重要なツールである。
劣化した画像品質は下流のセグメンテーションに影響を及ぼす可能性があるが、高品質の術前スキャンが利用可能であることは、改善の可能性を示唆している。
本稿では,CBCT と CT のほぼ一致したスキャンを融合させるマルチモーダル学習法を提案し,CBCT の品質と誤調整が最終的なセグメンテーション性能に与える影響について検討する。
論文 参考訳(メタデータ) (2024-06-17T15:31:54Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - PHE-SICH-CT-IDS: A Benchmark CT Image Dataset for Evaluation Semantic
Segmentation, Object Detection and Radiomic Feature Extraction of
Perihematomal Edema in Spontaneous Intracerebral Hemorrhage [2.602118060856794]
脳内出血は、世界で最も死亡率が高く、予後不良な疾患の1つである。
PHE-SICH-CT-IDSと命名したCTデータセットを,脳内自然出血に用いた。
論文 参考訳(メタデータ) (2023-08-21T07:18:51Z) - CT Perfusion is All We Need: 4D CNN Segmentation of Penumbra and Core in
Patients With Suspected Ischemic Stroke [1.6836876499886009]
本稿では,時間情報を完全に活用する4つの畳み込みを入力として利用する方法について検討する。
提案した4D mJ-Netを用いることで、ペニブラとコア領域の分割にそれぞれ0.53と0.23のDice係数が得られる。
論文 参考訳(メタデータ) (2023-03-15T16:53:19Z) - Predicting Thrombectomy Recanalization from CT Imaging Using Deep Learning Models [4.780704816027884]
術前CTとCTA画像を用いて,患者の再石灰化スコアの完全自動予測を提案した。
我々のトップモデルは平均クロスバリデードROC-AUC 77.33 $pm$3.9%を達成した。
論文 参考訳(メタデータ) (2023-02-08T15:41:21Z) - SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields [71.84366290195487]
神経減衰場を学習し,スパースビューCBCT再構成のためのSNAFを提案する。
提案手法は,入力ビューが20程度しかなく,高再生品質(30以上のPSNR)で優れた性能を実現する。
論文 参考訳(メタデータ) (2022-11-30T14:51:14Z) - CACTUSS: Common Anatomical CT-US Space for US examinations [36.45569352490318]
腹部大動脈瘤(英: Abdominal aortic aneurysm, AAA)は、大動脈の一部が拡大し、その壁を弱め、血管を破裂させる血管疾患である。
近年の腹部CTデータセットは, 深部神経回路の訓練に有効である。
CACTUSSはCTとUSモダリティの間の仮想ブリッジとして機能し、自動AAAスクリーニングソノグラフィーを可能にする。
論文 参考訳(メタデータ) (2022-07-18T14:05:25Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
本稿では,各脊椎の剛性と容積を保存し,登録精度を最大化しながら,弱教師付き深層学習フレームワークを提案する。
また,CTにおける椎体自動分節化はMRIと対比してより正確な結果をもたらすため,CTラベルマップのみに依存するよう,これらの損失を特に設計する。
以上の結果から, 解剖学的認識による損失の増大は, 精度を維持しつつも, 推測変換の妥当性を高めることが示唆された。
論文 参考訳(メタデータ) (2022-05-16T10:59:55Z) - AI-based Aortic Vessel Tree Segmentation for Cardiovascular Diseases
Treatment: Status Quo [55.04215695343928]
大動脈血管木は大動脈とその枝枝動脈からなる。
大動脈弁木の自動・半自動セグメンテーションのための計算手法を体系的に検討した。
論文 参考訳(メタデータ) (2021-08-06T08:18:28Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
我々は、胸部CT画像からCOVID-19の症例を検出するのに適した、深層畳み込みニューラルネットワークアーキテクチャであるCOVIDNet-CTを紹介した。
また,中国生体情報センターが収集したCT画像データから得られたベンチマークCT画像データセットであるCOVIDx-CTも紹介した。
論文 参考訳(メタデータ) (2020-09-08T15:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。