Compact Model Parameter Extraction via Derivative-Free Optimization
- URL: http://arxiv.org/abs/2406.16355v1
- Date: Mon, 24 Jun 2024 06:52:50 GMT
- Title: Compact Model Parameter Extraction via Derivative-Free Optimization
- Authors: Rafael Perez Martinez, Masaya Iwamoto, Kelly Woo, Zhengliang Bian, Roberto Tinti, Stephen Boyd, Srabanti Chowdhury,
- Abstract summary: Traditionally, parameter extraction is performed manually by dividing the complete set of parameters into smaller subsets.
We employ derivative-free optimization to identify a good parameter set that best fits the compact model without performing an exhaustive number of simulations.
We demonstrate the effectiveness of our methodology by successfully modeling two semiconductor devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the problem of compact model parameter extraction to simultaneously extract tens of parameters via derivative-free optimization. Traditionally, parameter extraction is performed manually by dividing the complete set of parameters into smaller subsets, each targeting different operational regions of the device, a process that can take several days or even weeks. Our approach streamlines this process by employing derivative-free optimization to identify a good parameter set that best fits the compact model without performing an exhaustive number of simulations. We further enhance the optimization process to address critical issues in device modeling by carefully choosing a loss function that evaluates model performance consistently across varying magnitudes by focusing on relative errors (as opposed to absolute errors), prioritizing accuracy in key operational regions of the device above a certain threshold, and reducing sensitivity to outliers. Furthermore, we utilize the concept of train-test split to assess the model fit and avoid overfitting. This is done by fitting 80% of the data and testing the model efficacy with the remaining 20%. We demonstrate the effectiveness of our methodology by successfully modeling two semiconductor devices: a diamond Schottky diode and a GaN-on-SiC HEMT, with the latter involving the ASM-HEMT DC model, which requires simultaneously extracting 35 model parameters to fit the model to the measured data. These examples demonstrate the effectiveness of our approach and showcase the practical benefits of derivative-free optimization in device modeling.
Related papers
- Parameter Efficient Merging for Multimodal Large Language Models with Complementary Parameter Adaptation [17.39117429338763]
We propose CoPA-Merging, a training-free parameter efficient merging method with complementary parameter adaptation.
We establish a benchmark consisting of diverse multimodal tasks, on which we conduct experiments to certificate the outstanding performance and generalizability of our method.
arXiv Detail & Related papers (2025-02-24T13:52:05Z) - Model Fusion through Bayesian Optimization in Language Model Fine-Tuning [16.86812534268461]
Fine-tuning pre-trained models for downstream tasks is a widely adopted technique known for its adaptability and reliability across various domains.
We introduce a novel model fusion technique that optimize both the desired metric and loss through multi-objective Bayesian optimization.
Experiments across various downstream tasks show considerable performance improvements using our Bayesian optimization-guided method.
arXiv Detail & Related papers (2024-11-11T04:36:58Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
We propose a new perspective on parameterization by investigating a key assumption in prior work.
Our empirical investigation includes tens of thousands of models trained with all combinations of threes.
We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work.
arXiv Detail & Related papers (2024-07-08T12:32:51Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
We propose a novel spectrum-aware adaptation framework for generative models.
Our method adjusts both singular values and their basis vectors of pretrained weights.
We introduce Spectral Ortho Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity.
arXiv Detail & Related papers (2024-05-31T17:43:35Z) - Sine Activated Low-Rank Matrices for Parameter Efficient Learning [25.12262017296922]
We propose a novel theoretical framework that integrates a sinusoidal function within the low-rank decomposition process.
Our method proves to be an enhancement for existing low-rank models, as evidenced by its successful application in Vision Transformers (ViT), Large Language Models (LLMs), Neural Radiance Fields (NeRF)
arXiv Detail & Related papers (2024-03-28T08:58:20Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
Fine-tuning large-scale pretrained vision models for new tasks has become increasingly parameter-intensive.
We propose an Effective and Efficient Visual Prompt Tuning (E2VPT) approach for large-scale transformer-based model adaptation.
Our approach outperforms several state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2023-07-25T19:03:21Z) - Active-Learning-Driven Surrogate Modeling for Efficient Simulation of
Parametric Nonlinear Systems [0.0]
In absence of governing equations, we need to construct the parametric reduced-order surrogate model in a non-intrusive fashion.
Our work provides a non-intrusive optimality criterion to efficiently populate the parameter snapshots.
We propose an active-learning-driven surrogate model using kernel-based shallow neural networks.
arXiv Detail & Related papers (2023-06-09T18:01:14Z) - On the Effectiveness of Parameter-Efficient Fine-Tuning [79.6302606855302]
Currently, many research works propose to only fine-tune a small portion of the parameters while keeping most of the parameters shared across different tasks.
We show that all of the methods are actually sparse fine-tuned models and conduct a novel theoretical analysis of them.
Despite the effectiveness of sparsity grounded by our theory, it still remains an open problem of how to choose the tunable parameters.
arXiv Detail & Related papers (2022-11-28T17:41:48Z) - Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for
Pre-trained Language Models [90.24999406296867]
In contrast with the standard fine-tuning, delta tuning only fine-tunes a small portion of the model parameters while keeping the rest untouched.
Recent studies have demonstrated that a series of delta tuning methods with distinct tuned parameter selection could achieve performance on a par with full- parameter fine-tuning.
arXiv Detail & Related papers (2022-03-14T07:56:32Z) - On the Parameter Combinations That Matter and on Those That do Not [0.0]
We present a data-driven approach to characterizing nonidentifiability of a model's parameters.
By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the dynamic output behavior.
arXiv Detail & Related papers (2021-10-13T13:46:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.