Machine Learning with Real-time and Small Footprint Anomaly Detection System for In-Vehicle Gateway
- URL: http://arxiv.org/abs/2406.16369v1
- Date: Mon, 24 Jun 2024 07:23:52 GMT
- Title: Machine Learning with Real-time and Small Footprint Anomaly Detection System for In-Vehicle Gateway
- Authors: Yi Wang, Yuanjin Zheng, Yajun Ha,
- Abstract summary: We propose to use the self-information theory to generate values for training and testing models.
Our proposed method achieves 8.7 times lower False Positive Rate (FPR), 1.77 times faster testing time, and 4.88 times smaller footprint.
- Score: 6.9113469208163245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly Detection System (ADS) is an essential part of a modern gateway Electronic Control Unit (ECU) to detect abnormal behaviors and attacks in vehicles. Among the existing attacks, ``one-time`` attack is the most challenging to be detected, together with the strict gateway ECU constraints of both microsecond or even nanosecond level real-time budget and limited footprint of code. To address the challenges, we propose to use the self-information theory to generate values for training and testing models, aiming to achieve real-time detection performance for the ``one-time`` attack that has not been well studied in the past. Second, the generation of self-information is based on logarithm calculation, which leads to the smallest footprint to reduce the cost in Gateway. Finally, our proposed method uses an unsupervised model without the need of training data for anomalies or attacks. We have compared different machine learning methods ranging from typical machine learning models to deep learning models, e.g., Hidden Markov Model (HMM), Support Vector Data Description (SVDD), and Long Short Term Memory (LSTM). Experimental results show that our proposed method achieves 8.7 times lower False Positive Rate (FPR), 1.77 times faster testing time, and 4.88 times smaller footprint.
Related papers
- P-YOLOv8: Efficient and Accurate Real-Time Detection of Distracted Driving [0.0]
Distracted driving is a critical safety issue that leads to numerous fatalities and injuries worldwide.
This study addresses the need for efficient and real-time machine learning models to detect distracted driving behaviors.
A real-time object detection system is introduced, optimized for both speed and accuracy.
arXiv Detail & Related papers (2024-10-21T02:56:44Z) - TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data [0.017476232824732776]
We propose a temporal variational autoencoder (TeVAE) that can detect anomalies with minimal false positives when trained on unlabelled data.
When properly configured, TeVAE flags anomalies only 6% of the time wrongly and detects 65% of anomalies present.
arXiv Detail & Related papers (2024-07-09T13:32:33Z) - IT Intrusion Detection Using Statistical Learning and Testbed
Measurements [8.493936898320673]
We study automated intrusion detection in an IT infrastructure, specifically the problem of identifying the start of an attack.
We apply statistical learning methods, including Hidden Markov Model (HMM), Long Short-Term Memory (LSTM), and Random Forest (RFC)
We find that both HMM and LSTM can be effective in predicting attack start time, attack type, and attack actions.
arXiv Detail & Related papers (2024-02-20T15:25:56Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
Out-of-distribution (OD) detection is an emerging approach to address the challenge of detecting out-of-distribution in real-time.
In this paper, we show how we can robustly detect hazardous motion around autonomous driving agents.
Our methods significantly improve detection capabilities of OoD factors to unique driving scenarios, 42% better than state-of-the-art approaches.
Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented.
arXiv Detail & Related papers (2021-07-25T07:52:53Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z) - Real-time Out-of-distribution Detection in Learning-Enabled
Cyber-Physical Systems [1.4213973379473654]
Cyber-physical systems benefit by using machine learning components that can handle the uncertainty and variability of the real-world.
Deep neural networks, however, introduce new types of hazards that may impact system safety.
Out-of-distribution data may lead to a large error and compromise safety.
arXiv Detail & Related papers (2020-01-28T17:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.