論文の概要: Generalized Dynamic Brain Functional Connectivity Based on Random Convolutions
- arxiv url: http://arxiv.org/abs/2406.16619v3
- Date: Wed, 06 Nov 2024 12:48:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:21:41.260346
- Title: Generalized Dynamic Brain Functional Connectivity Based on Random Convolutions
- Title(参考訳): ランダム畳み込みに基づく一般化された動的脳機能結合
- Authors: Yongjie Duan, Vince D. Calhoun, Zhiying Long,
- Abstract要約: 本稿では,多次元ランダム畳み込み(RandCon)DFC法によるダイナミクスの一般化手法を提案する。
最小のカーネルサイズ(3タイムポイント)を持つRandConでは、シミュレーションデータのパフォーマンスが顕著に向上した。
実際のfMRIデータから、RandConは競合する方法よりも男女差に敏感であることが示唆された。
- 参考スコア(独自算出の注目度): 15.620523540831021
- License:
- Abstract: Dynamic functional connectivity (DFC) analysis has been widely applied to functional magnetic resonance imaging (fMRI) data to reveal time-varying dynamic changes of brain states. The sliding window method is by far the most popular DFC analysis method due to its simplicity. However, the sliding window method comes with some assumptions, namely the typically approach uses a single window which captures dynamics only within a specific frequency range. In this study, we propose a generalized approach to dynamics via a multi-dimensional random convolution (RandCon) DFC method that is able to effectively capture time-varying DFC at arbitrary time scales by extracting different local features from fMRI time series using a number of multi-dimensional random convolution kernels without the need for learning kernel weights. Compared to a standard sliding window method, multiplication of temporal derivatives (MTD) and phase synchrony methods, RandCon with the smallest kernel size (3 time points) showed notable improvements in performance on simulated data, particularly in terms of DFC temporal and spatial estimation in very short window/kernel size under different noise levels. Results from real fMRI data indicated that RandCon was more sensitive to gender differences than competing methods. Furthermore, we show that the sliding window method can be considered a special case of the proposed multi-dimensional convolution framework. The proposed method is simple and efficient significantly broadens the scope of dynamic functional connectivity research and offer theoretical and practical potential.
- Abstract(参考訳): ダイナミック・ファンクショナル・コネクショナル・コネクティビティ(DFC)解析は機能的磁気共鳴画像(fMRI)データに広く応用され、脳状態の時間変化の動的変化を明らかにしている。
このスライディングウインドウ法は, 単純さから最も一般的なDFC解析法である。
しかしながら、スライディングウインドウ法にはいくつかの仮定があり、典型的なアプローチでは特定の周波数範囲内でのみダイナミックスをキャプチャする単一のウインドウを使用する。
本研究では,多次元ランダム畳み込み(RandCon)DFC法を用いて,カーネル重みを学習することなく,複数の多次元ランダム畳み込みカーネルを用いてfMRI時系列から異なる局所特徴を抽出し,任意の時間スケールで時間変化DFCを効果的に捕捉する手法を提案する。
標準スライディングウインドウ法、MTD法、位相同期法の乗算と比較すると、RandConは最小のカーネルサイズ(3タイムポイント)で、特にDFCの時間的および空間的推定において、異なるノイズレベル下での非常に短いウインドウ/カーネルサイズにおいて、シミュレーションデータの性能が顕著に向上した。
実際のfMRIデータから、RandConは競合する方法よりも男女差に敏感であることが示唆された。
さらに,提案手法を多次元畳み込みフレームワークの特別な場合とみなすことができることを示す。
提案手法は, 動的機能接続研究の範囲を大きく拡大し, 理論的, 実用的可能性を提供する。
関連論文リスト
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
部分走査は、磁気共鳴イメージング(MRI)データ取得を2次元および3次元の両方で加速する一般的な手法である。
本稿では,Faster Fourier Convolution (FasterFC) と呼ばれる新しい畳み込み演算子を提案する。
2次元加速MRI法であるFasterFC-End-to-End-VarNetは、FasterFCを用いて感度マップと再構成品質を改善する。
k空間領域再構成を誘導する単一グループアルゴリズムを用いたFasterFC-based Single-to-group Network (FAS-Net) と呼ばれる3次元加速MRI法
論文 参考訳(メタデータ) (2023-06-05T13:53:57Z) - Data-driven modelling of brain activity using neural networks, Diffusion
Maps, and the Koopman operator [0.0]
タスク依存型fMRIデータから脳活動の長期外ダイナミクスをモデル化するための機械学習手法を提案する。
我々は拡散写像(DM)を用いて、創発的な高次元fMRI時系列が進化する低次元多様体をパラメータ化する変数の集合を発見する。
組込み多様体上にFNN(Feedforward Neural Networks)とクープマン演算子(Koopman operator)という2つの手法を用いて、低次モデル(ROM)を構築する。
論文 参考訳(メタデータ) (2023-04-24T09:08:12Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - BolT: Fused Window Transformers for fMRI Time Series Analysis [0.0]
血液酸素レベル依存型トランスフォーマであるBolTをfMRI時系列解析のために提案する。
ウィンドウをまたいだ情報を統合するために、隣接する時間ウィンドウのベーストークンとフランジトークンの間で、クロスウィンドウアテンションが計算される。
公開fMRIデータセットの実験は、最先端の手法に対するBolTの優れた性能を明らかに示している。
論文 参考訳(メタデータ) (2022-05-23T19:17:06Z) - Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration [63.15453821022452]
ディープラーニングに基づくアプローチの最近の発展は、DiffIRのサブ秒間実行を実現している。
本稿では,中間定常速度場を機能的に構成する簡易な反復スキームを提案する。
次に、任意の順序の正規化項を用いて、これらの速度場に滑らかさを課す凸最適化モデルを提案する。
論文 参考訳(メタデータ) (2021-09-26T19:56:45Z) - Fast computation of mutual information in the frequency domain with
applications to global multimodal image alignment [3.584984184069584]
情報理論における相互情報(MI)の概念は,多モードアライメントプロセスの導出のための類似度尺度として広く用いられている。
すべての離散空間変位に対する計算MIの効率的なアルゴリズムを提案する。
提案手法の有効性を3つのベンチマークデータセットで評価した。
論文 参考訳(メタデータ) (2021-06-28T13:27:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。