論文の概要: GC4NC: A Benchmark Framework for Graph Condensation on Node Classification with New Insights
- arxiv url: http://arxiv.org/abs/2406.16715v2
- Date: Sun, 06 Oct 2024 04:05:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-08 13:11:10.828702
- Title: GC4NC: A Benchmark Framework for Graph Condensation on Node Classification with New Insights
- Title(参考訳): GC4NC: 新しいインサイトによるノード分類に関するグラフ凝縮のためのベンチマークフレームワーク
- Authors: Shengbo Gong, Juntong Ni, Noveen Sachdeva, Carl Yang, Wei Jin,
- Abstract要約: グラフ凝縮(GC)は、元のグラフの本質的な情報を保持する、はるかに小さなグラフを学習するために設計された新興技術である。
本稿では,ノード分類における多様なGC手法を評価するための包括的フレームワークである textbfGC4NC を紹介する。
私たちの体系的な評価は、凝縮グラフがどのように振る舞うか、そしてその成功を導く重要な設計選択について、新しい洞察を与えます。
- 参考スコア(独自算出の注目度): 30.796414860754837
- License:
- Abstract: Graph condensation (GC) is an emerging technique designed to learn a significantly smaller graph that retains the essential information of the original graph. This condensed graph has shown promise in accelerating graph neural networks while preserving performance comparable to those achieved with the original, larger graphs. Additionally, this technique facilitates downstream applications like neural architecture search and deepens our understanding of redundancies in large graphs. Despite the rapid development of GC methods, particularly for node classification, a unified evaluation framework is still lacking to systematically compare different GC methods or clarify key design choices for improving their effectiveness. To bridge these gaps, we introduce \textbf{GC4NC}, a comprehensive framework for evaluating diverse GC methods on node classification across multiple dimensions including performance, efficiency, privacy preservation, denoising ability, NAS effectiveness, and transferability. Our systematic evaluation offers novel insights into how condensed graphs behave and the critical design choices that drive their success. These findings pave the way for future advancements in GC methods, enhancing both performance and expanding their real-world applications. Our code is available at \url{https://github.com/Emory-Melody/GraphSlim/tree/main/benchmark}.
- Abstract(参考訳): グラフ凝縮(GC)は、元のグラフの本質的な情報を保持する、はるかに小さなグラフを学習するために設計された新興技術である。
この凝縮グラフは、元の大きなグラフで達成されたものと同等のパフォーマンスを維持しながら、グラフニューラルネットワークを加速する可能性を示している。
さらに、この技術は、ニューラルネットワーク検索のような下流のアプリケーションを容易にし、大きなグラフにおける冗長性に対する理解を深めます。
GCメソッド、特にノード分類の急速な開発にもかかわらず、統一評価フレームワークは、異なるGCメソッドを体系的に比較したり、その有効性を改善するための重要な設計選択を明確にすることができない。
このようなギャップを埋めるために,パフォーマンス,効率,プライバシ保護,通知機能,NASの有効性,転送性など,ノード分類における多様なGCメソッドを評価するための包括的なフレームワークである‘textbf{GC4NC} を紹介した。
私たちの体系的な評価は、凝縮グラフがどのように振る舞うか、そしてその成功を導く重要な設計選択について、新しい洞察を与えます。
これらの知見は、GCメソッドの今後の進歩の道を開くもので、パフォーマンスの向上と実世界のアプリケーションの拡張の両立を図っている。
私たちのコードは \url{https://github.com/Emory-Melody/GraphSlim/tree/main/benchmark} で利用可能です。
関連論文リスト
- GC-Bench: An Open and Unified Benchmark for Graph Condensation [54.70801435138878]
我々は,グラフ凝縮の性能を解析するための総合的なグラフ凝縮ベンチマーク (GC-Bench) を開発した。
GC-Benchは、グラフ凝縮の特徴を以下の次元で体系的に研究している。
我々は,再現性のある研究を容易にするために,異なるGC手法を訓練し,評価するための簡易ライブラリを開発した。
論文 参考訳(メタデータ) (2024-06-30T07:47:34Z) - RobGC: Towards Robust Graph Condensation [61.259453496191696]
グラフニューラルネットワーク(GNN)は、グラフ表現学習の目覚ましい能力によって広く注目を集めている。
しかし,大規模グラフの普及は,その計算要求により,GNNトレーニングにとって大きな課題となる。
本稿では,GNNを効率よく学習し,性能を保ちつつ,情報的コンパクトなグラフを生成するために,GC(Graph Condensation)を提案する。
論文 参考訳(メタデータ) (2024-06-19T04:14:57Z) - GCondenser: Benchmarking Graph Condensation [26.458605619132385]
本稿では,大規模グラフ凝縮ベンチマークGCondenserを提案する。
GCondenserには標準化されたGCパラダイムが含まれており、凝縮、バリデーション、評価手順で構成され、新しいGCメソッドやデータセットの拡張を可能にする。
論文 参考訳(メタデータ) (2024-05-23T07:25:31Z) - Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition [56.26113670151363]
グラフ凝縮(Graph condensation)は、大きなグラフを小さいが情報的な凝縮グラフに置き換えるための、データ中心のソリューションである。
既存のGCメソッドは複雑な最適化プロセスに悩まされており、過剰な計算資源を必要とする。
我々は、CGC(Class-partitioned Graph Condensation)と呼ばれるトレーニング不要なGCフレームワークを提案する。
CGCはより効率的な凝縮プロセスで最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-05-22T14:57:09Z) - Graph Condensation: A Survey [49.41718583061147]
グラフデータの急速な成長は、ストレージ、送信、特にグラフニューラルネットワーク(GNN)のトレーニングにおいて大きな課題をもたらす。
これらの課題に対処するために、グラフ凝縮(GC)が革新的な解決策として登場した。
GCはコンパクトだが非常に代表的なグラフに重点を置いており、トレーニングされたGNNが元の大きなグラフでトレーニングされたグラフに匹敵するパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2024-01-22T06:47:00Z) - From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited [51.24526202984846]
グラフベースの半教師付き学習(GSSL)は、長い間ホットな研究トピックだった。
グラフ畳み込みネットワーク (GCN) は, 有望な性能を示す主要な技術となっている。
論文 参考訳(メタデータ) (2023-09-24T10:10:21Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。