論文の概要: Convolutional neural network for Lyman break galaxies classification and redshift regression in DESI (Dark Energy Spectroscopic Instrument)
- arxiv url: http://arxiv.org/abs/2406.16730v1
- Date: Mon, 24 Jun 2024 15:35:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 14:15:21.806691
- Title: Convolutional neural network for Lyman break galaxies classification and redshift regression in DESI (Dark Energy Spectroscopic Instrument)
- Title(参考訳): DESI(Dark Energy Spectroscopic Instrument)におけるリマン破れ銀河分類と赤方偏移回帰のための畳み込みニューラルネットワーク
- Authors: Julien Taran,
- Abstract要約: 我々は、DESI、Lyman Break Galaxies (LBGs)によって観測される1種類の物体に焦点を当てている。
目的は、スペクトルを用いて実際にLBGであるかどうかを判断し、もしそうなら、赤方偏移と呼ばれる現象を使って地球からの距離を決定することである。
これにより、これらの銀河をDESI 3Dマップ上に配置することができます。
この目的は、QuassarNETにインスパイアされた畳み込みニューラルネットワーク(CNN)を開発することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: DESI is a groundbreaking international project to observe more than 40 million quasars and galaxies over a 5-year period to create a 3D map of the sky. This map will enable us to probe multiple aspects of cosmology, from dark energy to neutrino mass. We are focusing here on one type of object observed by DESI, the Lyman Break Galaxies (LBGs). The aim is to use their spectra to determine whether they are indeed LBGs, and if so, to determine their distance from the Earth using a phenomenon called redshift. This will enable us to place these galaxies on the DESI 3D map. The aim is therefore to develop a convolutional neural network (CNN) inspired by QuasarNET (See arXiv:1808.09955), performing simultaneously a classification (LBG type or not) and a regression task (determine the redshift of the LBGs). Initially, data augmentation techniques such as shifting the spectra in wavelengths, adding noise to the spectra, or adding synthetic spectra were used to increase the model training dataset from 3,019 data to over 66,000. In a second phase, modifications to the QuasarNET architecture, notably through transfer learning and hyperparameter tuning with Bayesian optimization, boosted model performance. Gains of up to 26% were achieved on the Purity/Efficiency curve, which is used to evaluate model performance, particularly in areas with interesting redshifts, at low (around 2) and high (around 4) redshifts. The best model obtained an average score of 94%, compared with 75% for the initial model.
- Abstract(参考訳): DESIは、4000万個のクエーサーと銀河を5年間にわたって観測し、空の3Dマップを作成するという、画期的な国際プロジェクトです。
この地図は、ダークエネルギーからニュートリノ質量まで、宇宙論の様々な側面を探索することができる。
我々は、DESI、Lyman Break Galaxies (LBGs)によって観察される1つの種類の物体に焦点を当てている。
目的は、スペクトルを用いて実際にLBGであるかどうかを判断し、もしそうなら、赤方偏移と呼ばれる現象を使って地球からの距離を決定することである。
これにより、これらの銀河をDESI 3Dマップ上に配置することができます。
この目的は、QuasarNET(See arXiv:1808.09955)にインスパイアされた畳み込みニューラルネットワーク(CNN)を開発し、同時に分類(LBG型の有無)と回帰タスク(LBGの赤方偏移を決定する)を実行することである。
当初、スペクトルを波長にシフトさせたり、スペクトルにノイズを加えたり、合成スペクトルを加えたりといったデータ拡張技術を使用して、モデルのトレーニングデータセットを3,019データから66,000データに増やした。
第2フェーズでは、転送学習とベイズ最適化によるハイパーパラメータチューニングにより、QuassarNETアーキテクチャの変更によりモデル性能が向上した。
特に興味深い赤方偏移のある地域では、低(約2回)、高(約4回)の赤方偏移でモデル性能を評価するために使用される純度/効率曲線で最大26%のゲインが達成された。
ベストモデルの平均スコアは94%で、初期モデルでは75%だった。
関連論文リスト
- Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
近似を行なわずに1秒で完全なBNS推論を行う機械学習アプローチを開発する。
提案手法は, 最大1時間までの非常に長い信号にスケールし, 次世代地上・宇宙用検出器のデータ解析の青写真として機能する。
論文 参考訳(メタデータ) (2024-07-12T18:00:02Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
光ガウシアン(LightGaussian)は、3次元ガウシアンをより効率的でコンパクトなフォーマットに変換する新しい方法である。
ネットワーク・プルーニング(Network Pruning)の概念からインスピレーションを得たLightGaussianは、シーンの再構築に貢献するに足りていないガウシアンを特定する。
本稿では,全ての属性を量子化するハイブリッド方式であるVecTree Quantizationを提案する。
論文 参考訳(メタデータ) (2023-11-28T21:39:20Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
SpectralGPTという名前のユニバーサルRS基盤モデルは、新しい3D生成事前学習変換器(GPT)を用いてスペクトルRS画像を処理するために構築されている。
既存の基礎モデルと比較して、SpectralGPTは、様々なサイズ、解像度、時系列、領域をプログレッシブトレーニング形式で対応し、広範なRSビッグデータのフル活用を可能にする。
我々の評価では、事前訓練されたスペクトルGPTモデルによる顕著な性能向上が強調され、地球科学分野におけるスペクトルRSビッグデータ応用の進展に有意な可能性を示唆している。
論文 参考訳(メタデータ) (2023-11-13T07:09:30Z) - Field-level simulation-based inference with galaxy catalogs: the impact of systematic effects [0.6271213328710472]
我々は、CAMELSプロジェクトと異なるコードで実行される何千もの最先端の流体力学シミュレーションから生成された銀河カタログ上で、我々のモデルを訓練し、テストする。
これらの効果の存在はモデルの精度と精度を低下させるが、モデルが良好に機能する銀河カタログの比率は90%以上である。
論文 参考訳(メタデータ) (2023-10-23T18:00:07Z) - AstroCLIP: A Cross-Modal Foundation Model for Galaxies [40.43521617393482]
AstroCLIPは、銀河の画像とスペクトルを個別に埋め込むため、トランスフォーマーベースの画像とスペクトルエンコーダを自己監督設定で事前訓練する。
教師付きベースラインと比較しても、下流のタスクで顕著なパフォーマンスが得られます。
提案手法は、銀河の画像とスペクトルの自己教師型変換器に基づく最初のアーキテクチャである。
論文 参考訳(メタデータ) (2023-10-04T17:59:38Z) - Deep-learning based measurement of planetary radial velocities in the
presence of stellar variability [70.4007464488724]
我々は、HARPS-N Sun-as-a-star Spectraの3年間の恒星RVジッタを低減するためにニューラルネットワークを使用する。
マルチラインCNNは、半振幅0.2m/s、50日間、振幅8.8%、周期0.7%の誤差で惑星を回復することができる。
論文 参考訳(メタデータ) (2023-04-10T18:33:36Z) - Multiscale Spatio-Temporal Graph Neural Networks for 3D Skeleton-Based
Motion Prediction [92.16318571149553]
本稿では,次世代の3次元骨格型人間のポーズを予測するため,マルチスケール・テンポラルグラフニューラルネットワーク(MST-GNN)を提案する。
MST-GNNは、短期および長期の動作予測において最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-08-25T14:05:37Z) - HYPER-SNN: Towards Energy-efficient Quantized Deep Spiking Neural
Networks for Hyperspectral Image Classification [5.094623170336122]
スパイキングニューラルネットワーク(SNN)は、重量、膜漏れ、発射閾値を最適化するために量子化対応の勾配降下を訓練する。
トレーニングと推論の両方の間、HSIのアナログ画素値はスパイクトレインに変換することなくSNNの入力層に直接適用される。
3次元および3次元/2次元ハイブリッド畳み込みアーキテクチャ上での3つのHSIデータセットを用いて提案手法の評価を行った。
論文 参考訳(メタデータ) (2021-07-26T06:17:10Z) - Morphological classification of compact and extended radio galaxies
using convolutional neural networks and data augmentation techniques [0.0]
この研究は、FIRST (Faint Images of the Radio Sky at Twenty Centimeters) からのアーカイブデータを用いて、電波銀河を4つのクラスに分類する。
この研究で示されたモデルは、畳み込みニューラルネットワーク(CNN)に基づいている。
本モデルでは,精度,リコール,F1スコアの平均96%の独立したテストサブセットを用いて,選択した電波源のクラスを分類した。
論文 参考訳(メタデータ) (2021-07-01T11:53:18Z) - Primordial non-Gaussianity from the Completed SDSS-IV extended Baryon
Oscillation Spectroscopic Survey I: Catalogue Preparation and Systematic
Mitigation [3.2855185490071444]
最近完了したバリオン振動分光サーベイ(eBOSS)による最終分光試料の大規模クラスタリングについて検討する。
フォローアップ分光のターゲットを選択するために使用される画像データの品質の空間的変動に起因する密度場の急激なゆらぎを軽減するニューラルネットワークベースのアプローチを開発した。
論文 参考訳(メタデータ) (2021-06-25T16:01:19Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
本研究では,低地光度銀河と人工物とを分離する問題に対する畳み込みニューラルネットワーク(CNN)の利用について検討する。
我々は、CNNが低地光度宇宙の研究に非常に有望な道を提供することを示した。
論文 参考訳(メタデータ) (2020-11-24T22:51:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。