論文の概要: LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS
- arxiv url: http://arxiv.org/abs/2311.17245v6
- Date: Tue, 12 Nov 2024 18:50:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:17:08.015807
- Title: LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS
- Title(参考訳): LightGaussian:15倍の圧縮と200以上のFPSを備えた3Dガウス圧縮
- Authors: Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, Zhangyang Wang,
- Abstract要約: 光ガウシアン(LightGaussian)は、3次元ガウシアンをよりコンパクトなフォーマットに変換する方法である。
ネットワーク・プルーニングにインスパイアされたLightGaussianは、ガウシアンをシーン再構築において最小限のグローバルな重要性で特定した。
LightGaussian は 3D-GS フレームワークで FPS を 144 から 237 に上げながら,平均 15 倍の圧縮率を達成する。
- 参考スコア(独自算出の注目度): 55.85673901231235
- License:
- Abstract: Recent advances in real-time neural rendering using point-based techniques have enabled broader adoption of 3D representations. However, foundational approaches like 3D Gaussian Splatting impose substantial storage overhead, as Structure-from-Motion (SfM) points can grow to millions, often requiring gigabyte-level disk space for a single unbounded scene. This growth presents scalability challenges and hinders splatting efficiency. To address this, we introduce LightGaussian, a method for transforming 3D Gaussians into a more compact format. Inspired by Network Pruning, LightGaussian identifies Gaussians with minimal global significance on scene reconstruction, and applies a pruning and recovery process to reduce redundancy while preserving visual quality. Knowledge distillation and pseudo-view augmentation then transfer spherical harmonic coefficients to a lower degree, yielding compact representations. Gaussian Vector Quantization, based on each Gaussian's global significance, further lowers bitwidth with minimal accuracy loss. LightGaussian achieves an average 15x compression rate while boosting FPS from 144 to 237 within the 3D-GS framework, enabling efficient complex scene representation on the Mip-NeRF 360 and Tank & Temple datasets. The proposed Gaussian pruning approach is also adaptable to other 3D representations (e.g., Scaffold-GS), demonstrating strong generalization capabilities.
- Abstract(参考訳): ポイントベース技術を用いたリアルタイムニューラルレンダリングの最近の進歩は、3D表現のより広範な採用を可能にしている。
しかし、3D Gaussian Splattingのような基本的なアプローチでは、Structure-from-Motion(SfM)ポイントが数百万に増加し、単一の無制限シーンにギガバイトレベルのディスクスペースを必要とする場合が多い。
この成長はスケーラビリティの課題を示し、スプラッティング効率を妨げる。
そこで本研究では、3次元ガウスをよりコンパクトなフォーマットに変換する方法であるLightGaussianを紹介する。
ネットワークプルーニングにインスパイアされたLightGaussianは、シーン再構築において最小限のグローバルな重要性を持つガウスを識別し、視覚的品質を維持しながら冗長性を低減するためにプルーニングとリカバリのプロセスを適用する。
知識蒸留と擬視拡大は球面調和係数を低次に変換し、コンパクトな表現を与える。
ガウスベクトル量子化は、各ガウスのグローバルな重要性に基づいて、最小精度の損失でビット幅をさらに小さくする。
LightGaussianは、3D-GSフレームワークのFPSを144から237に向上させ、Mip-NeRF 360とTurant & Templeのデータセット上で効率的な複雑なシーン表現を可能にする。
提案したガウスプルーニングアプローチは、他の3次元表現(例えば、Scaffold-GS)にも適用可能であり、強力な一般化能力を示している。
関連論文リスト
- CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2は大規模なシーン再構築のための新しいアプローチである。
分解段階の密度化・深さ回帰手法を実装し, ぼやけたアーチファクトを除去し, 収束を加速する。
本手法は, 視覚的品質, 幾何学的精度, ストレージ, トレーニングコストの両立を図っている。
論文 参考訳(メタデータ) (2024-11-01T17:59:31Z) - PixelGaussian: Generalizable 3D Gaussian Reconstruction from Arbitrary Views [116.10577967146762]
PixelGaussianは、任意の視点から一般化可能な3Dガウス再構成を学習するための効率的なフレームワークである。
提案手法は,様々な視点によく一般化した最先端性能を実現する。
論文 参考訳(メタデータ) (2024-10-24T17:59:58Z) - AdR-Gaussian: Accelerating Gaussian Splatting with Adaptive Radius [38.774337140911044]
3D Gaussian Splatting (3DGS)は、複雑なシーンの高品質な再構成とリアルタイムレンダリングを実現した、最近の明示的な3D表現である。
本稿では,AdR-Gaussianを提案する。これは並列カリングを実現するために,Renderステージのシリアルカリングの一部を前処理ステージに移動させる。
私たちのコントリビューションは3倍で、レンダリング速度は310%で、最先端技術よりも同等かそれ以上品質を維持しています。
論文 参考訳(メタデータ) (2024-09-13T09:32:38Z) - GaussianForest: Hierarchical-Hybrid 3D Gaussian Splatting for Compressed Scene Modeling [40.743135560583816]
本稿では,ハイブリッド3Dガウスの森として景観を階層的に表現するガウス・フォレスト・モデリング・フレームワークを紹介する。
実験により、ガウス・フォレストは同等の速度と品質を維持するだけでなく、圧縮速度が10倍を超えることが示されている。
論文 参考訳(メタデータ) (2024-06-13T02:41:11Z) - RTG-SLAM: Real-time 3D Reconstruction at Scale using Gaussian Splatting [51.51310922527121]
ガウススプラッティングを用いた大規模環境のためのRGBDカメラを用いたリアルタイム3D再構成システムを提案する。
それぞれのガウス語は不透明かほぼ透明で、不透明なものは表面色と支配的な色に、透明なものは残留色に適合する。
様々な大きなシーンをリアルタイムに再現し、新しいビュー合成とカメラトラッキングの精度のリアリズムにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-30T16:54:59Z) - HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression [55.6351304553003]
3D Gaussian Splatting (3DGS) は、新しいビュー合成のための有望なフレームワークとして登場した。
高速な3DGS表現のためのHash-grid Assisted Context (HAC) フレームワークを提案する。
私たちの研究は、コンテキストベースの3DGS表現の圧縮を探求するパイオニアです。
論文 参考訳(メタデータ) (2024-03-21T16:28:58Z) - Compact 3D Gaussian Splatting For Dense Visual SLAM [32.37035997240123]
本稿では,ガウス楕円体の数とパラメータサイズを削減できるコンパクトな3次元ガウス格子SLAMシステムを提案する。
余剰楕円体を減らすために、スライドウィンドウベースのマスキング戦略が最初に提案されている。
本手法は,シーン表現の最先端(SOTA)品質を維持しつつ,高速なトレーニングとレンダリングの高速化を実現する。
論文 参考訳(メタデータ) (2024-03-17T15:41:35Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - Compact 3D Gaussian Representation for Radiance Field [14.729871192785696]
本研究では,3次元ガウス点数を削減するための学習可能なマスク戦略を提案する。
また、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2023-11-22T20:31:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。