論文の概要: AIvril: AI-Driven RTL Generation With Verification In-The-Loop
- arxiv url: http://arxiv.org/abs/2409.11411v1
- Date: Tue, 3 Sep 2024 15:07:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-22 21:12:27.981732
- Title: AIvril: AI-Driven RTL Generation With Verification In-The-Loop
- Title(参考訳): AIvril:AI駆動のRTL生成をオンザループで検証する
- Authors: Mubashir ul Islam, Humza Sami, Pierre-Emmanuel Gaillardon, Valerio Tenace,
- Abstract要約: LLM(Large Language Models)は、複雑な自然言語処理タスクを実行できる計算モデルである。
本稿では,RTL対応LLMの精度と信頼性を高めるためのフレームワークであるAIvrilを紹介する。
- 参考スコア(独自算出の注目度): 0.7831852829409273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are computational models capable of performing complex natural language processing tasks. Leveraging these capabilities, LLMs hold the potential to transform the entire hardware design stack, with predictions suggesting that front-end and back-end tasks could be fully automated in the near future. Currently, LLMs show great promise in streamlining Register Transfer Level (RTL) generation, enhancing efficiency, and accelerating innovation. However, their probabilistic nature makes them prone to inaccuracies - a significant drawback in RTL design, where reliability and precision are essential. To address these challenges, this paper introduces AIvril, an advanced framework designed to enhance the accuracy and reliability of RTL-aware LLMs. AIvril employs a multi-agent, LLM-agnostic system for automatic syntax correction and functional verification, significantly reducing - and in many cases, completely eliminating - instances of erroneous code generation. Experimental results conducted on the VerilogEval-Human dataset show that our framework improves code quality by nearly 2x when compared to previous works, while achieving an 88.46% success rate in meeting verification objectives. This represents a critical step toward automating and optimizing hardware design workflows, offering a more dependable methodology for AI-driven RTL design.
- Abstract(参考訳): LLM(Large Language Models)は、複雑な自然言語処理タスクを実行できる計算モデルである。
これらの機能を活用して、LLMはハードウェア設計スタック全体を変革する可能性を秘めており、近い将来、フロントエンドとバックエンドのタスクが完全に自動化される可能性があることを予測している。
現在、LLMはレジスタ転送レベル(RTL)生成の合理化、効率の向上、イノベーションの加速において大きな可能性を秘めている。
しかし、その確率論的性質は、信頼性と精度が不可欠であるRTL設計において重大な欠点である不正確なものになりがちである。
これらの課題に対処するため,本論文では,RTL対応LLMの精度と信頼性を高めるための高度なフレームワークであるAIvrilを紹介する。
AIvrilは自動構文修正と機能検証のために,マルチエージェントのLLM非依存システムを採用しています。
VerilogEval-Humanデータセットで実施された実験結果から,我々のフレームワークは,検証対象を満たす上で88.46%の成功率を達成する一方で,従来の作業に比べてコード品質を約2倍向上させることがわかった。
これは、ハードウェア設計ワークフローの自動化と最適化に向けた重要なステップであり、AI駆動のRTL設計のためのより信頼性の高い方法論を提供する。
関連論文リスト
- Exploring Code Language Models for Automated HLS-based Hardware Generation: Benchmark, Infrastructure and Analysis [49.998130983414924]
LLM(Large Language Model)は、PythonやC++などのプログラミング言語に使用される。
本稿では,LLMを利用してHLS(High-Level Synthesis)ベースのハードウェア設計を行う。
論文 参考訳(メタデータ) (2025-02-19T17:53:59Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - SynerGen-VL: Towards Synergistic Image Understanding and Generation with Vision Experts and Token Folding [66.74446220401296]
画像の理解と生成の両方が可能なシンプルだが強力なエンコーダのないMLLMであるSynerGen-VLを提案する。
トークンの折り畳み機構と,高分解能画像理解を効果的に支援するビジョンエキスパートベースのプログレッシブアライメント事前学習戦略を導入する。
コードとモデルはリリースされます。
論文 参考訳(メタデータ) (2024-12-12T18:59:26Z) - MAGE: A Multi-Agent Engine for Automated RTL Code Generation [5.899673582879575]
MAGEは、堅牢で正確なVerilog RTLコード生成のために設計された、最初のオープンソースのマルチエージェントAIシステムである。
MAGE は VerilogEval-Human 2 ベンチマークで 95.7% の構文的および機能的正当性コード生成を実現している。
論文 参考訳(メタデータ) (2024-12-10T21:53:55Z) - EDA-Aware RTL Generation with Large Language Models [0.7831852829409273]
LLM(Large Language Models)は、RTLコードを生成するために人気が高まっている。
ゼロショット設定でエラーのないRTLコードを生成することは、最先端のLLMでも非常に難しい。
本稿では,構文と機能的エラーの反復的修正によるRTLコード生成の高速化を目的とした,自己検証型LLM非依存型エージェントフレームワークであるAIvril2を紹介する。
論文 参考訳(メタデータ) (2024-11-21T00:37:51Z) - DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
実世界のロボットのためのMLLMの開発は、ロボットプラットフォームで利用可能な計算能力とメモリ容量が典型的に限られているため、難しい。
活性化MLLMのサイズを自動的に調整するロボットビジョンランゲージ・アクション・モデル(DeeR)の動的早期実行フレームワークを提案する。
DeeR は LLM の計算コストを 5.2-6.5x に削減し、GPU のメモリを 2-6x に削減した。
論文 参考訳(メタデータ) (2024-11-04T18:26:08Z) - FVEval: Understanding Language Model Capabilities in Formal Verification of Digital Hardware [4.480157114854711]
FVEvalは,形式的検証(FV)に関わるタスクにおいて,大規模言語モデル(LLM)のパフォーマンスを特徴付ける最初の総合ベンチマークである。
ベンチマークは3つのサブタスクで構成され、異なるレベルでLLM能力を測定する。
本稿では,FVに整合した合成例を生成するための,専門家による検証手法と手法のコレクションについて述べる。
論文 参考訳(メタデータ) (2024-10-15T21:48:57Z) - RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
大規模言語モデル(LLM)は、コード生成タスクにおいて驚くべきポテンシャルを示しています。
LLMはタスク記述に基づいてコードを生成することができるが、精度は限られている。
コード生成と自動デバッグのためのLLMエージェントの新しいアーキテクチャ:Refinement and Guidancebug (RGD)を紹介する。
RGDはコード生成タスクを複数のステップに分割し、より明確なワークフローを確保し、自己回帰とフィードバックに基づいた反復的なコード改善を可能にする。
論文 参考訳(メタデータ) (2024-10-02T05:07:02Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。