Statistical Error Bounds for GANs with Nonlinear Objective Functionals
- URL: http://arxiv.org/abs/2406.16834v2
- Date: Tue, 07 Jan 2025 17:05:11 GMT
- Title: Statistical Error Bounds for GANs with Nonlinear Objective Functionals
- Authors: Jeremiah Birrell,
- Abstract summary: We derive statistical error bounds for $(f,Gamma)$-GANs for general classes of $f$ and $Gamma$ in the form of finite-sample concentration inequalities.
Results prove the statistical consistency of $(f,Gamma)$-GANs and reduce to the known results for IPM-GANs in the appropriate limit.
- Score: 5.022028859839544
- License:
- Abstract: Generative adversarial networks (GANs) are unsupervised learning methods for training a generator distribution to produce samples that approximate those drawn from a target distribution. Many such methods can be formulated as minimization of a metric or divergence between probability distributions. Recent works have derived statistical error bounds for GANs that are based on integral probability metrics (IPMs), e.g., WGAN which is based on the 1-Wasserstein metric. In general, IPMs are defined by optimizing a linear functional (difference of expectations) over a space of discriminators. A much larger class of GANs, which we here call $(f,\Gamma)$-GANs, can be constructed using $f$-divergences (e.g., Jensen-Shannon, KL, or $\alpha$-divergences) together with a regularizing discriminator space $\Gamma$ (e.g., $1$-Lipschitz functions). These GANs have nonlinear objective functions, depending on the choice of $f$, and have been shown to exhibit improved performance in a number of applications. In this work we derive statistical error bounds for $(f,\Gamma)$-GANs for general classes of $f$ and $\Gamma$ in the form of finite-sample concentration inequalities. These results prove the statistical consistency of $(f,\Gamma)$-GANs and reduce to the known results for IPM-GANs in the appropriate limit. Finally, our results also give new insight into the performance of GANs for distributions with unbounded support.
Related papers
- Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - Idempotent Generative Network [61.78905138698094]
We propose a new approach for generative modeling based on training a neural network to be idempotent.
An idempotent operator is one that can be applied sequentially without changing the result beyond the initial application.
We find that by processing inputs from both target and source distributions, the model adeptly projects corrupted or modified data back to the target manifold.
arXiv Detail & Related papers (2023-11-02T17:59:55Z) - Addressing GAN Training Instabilities via Tunable Classification Losses [8.151943266391493]
Generative adversarial networks (GANs) allow generating synthetic data with formal guarantees.
We show that all symmetric $f$-divergences are equivalent in convergence.
We also highlight the value of tuning $(alpha_D,alpha_G)$ in alleviating training instabilities for the synthetic 2D Gaussian mixture ring.
arXiv Detail & Related papers (2023-10-27T17:29:07Z) - $(\alpha_D,\alpha_G)$-GANs: Addressing GAN Training Instabilities via
Dual Objectives [7.493779672689531]
We introduce a class of dual-objective GANs with different value functions (objectives) for the generator (G) and discriminator (D)
We show that the resulting non-zero sum game simplifies to minimize an $f$-divergence under appropriate conditions on $(alpha_D,alpha_G)$.
We highlight the value of tuning $(alpha_D,alpha_G)$ in alleviating training instabilities for the synthetic 2D Gaussian mixture ring and the Stacked MNIST datasets.
arXiv Detail & Related papers (2023-02-28T05:22:54Z) - Statistical Learning under Heterogeneous Distribution Shift [71.8393170225794]
Ground-truth predictor is additive $mathbbE[mathbfz mid mathbfx,mathbfy] = f_star(mathbfx) +g_star(mathbfy)$.
arXiv Detail & Related papers (2023-02-27T16:34:21Z) - On counterfactual inference with unobserved confounding [36.18241676876348]
Given an observational study with $n$ independent but heterogeneous units, our goal is to learn the counterfactual distribution for each unit.
We introduce a convex objective that pools all $n$ samples to jointly learn all $n$ parameter vectors.
We derive sufficient conditions for compactly supported distributions to satisfy the logarithmic Sobolev inequality.
arXiv Detail & Related papers (2022-11-14T04:14:37Z) - On the Identifiability and Estimation of Causal Location-Scale Noise
Models [122.65417012597754]
We study the class of location-scale or heteroscedastic noise models (LSNMs)
We show the causal direction is identifiable up to some pathological cases.
We propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks.
arXiv Detail & Related papers (2022-10-13T17:18:59Z) - Asymptotic Statistical Analysis of $f$-divergence GAN [13.587087960403199]
Generative Adversarial Networks (GANs) have achieved great success in data generation.
We consider the statistical behavior of the general $f$-divergence formulation of GAN.
The resulting estimation method is referred to as Adversarial Gradient Estimation (AGE)
arXiv Detail & Related papers (2022-09-14T18:08:37Z) - Non-Gaussian Component Analysis via Lattice Basis Reduction [56.98280399449707]
Non-Gaussian Component Analysis (NGCA) is a distribution learning problem.
We provide an efficient algorithm for NGCA in the regime that $A$ is discrete or nearly discrete.
arXiv Detail & Related papers (2021-12-16T18:38:02Z) - Convergence and Sample Complexity of SGD in GANs [15.25030172685628]
We provide convergence guarantees on training Generative Adversarial Networks (GANs) via SGD.
We consider learning a target distribution modeled by a 1-layer Generator network with a non-linear activation function.
Our results apply to a broad class of non-linear activation functions $phi$, including ReLUs and is enabled by a connection with truncated statistics.
arXiv Detail & Related papers (2020-12-01T18:50:38Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
Generative Adversarial Networks (GANs) have shown great promise in modeling high dimensional data.
We introduce the Discriminator Contrastive Divergence, which is well motivated by the property of WGAN's discriminator.
We demonstrate the benefits of significant improved generation on both synthetic data and several real-world image generation benchmarks.
arXiv Detail & Related papers (2020-04-05T01:50:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.