f-GAN: A frequency-domain-constrained generative adversarial network for PPG to ECG synthesis
- URL: http://arxiv.org/abs/2406.16896v1
- Date: Wed, 15 May 2024 18:53:05 GMT
- Title: f-GAN: A frequency-domain-constrained generative adversarial network for PPG to ECG synthesis
- Authors: Nathan C. L. Kong, Dae Lee, Huyen Do, Dae Hoon Park, Cong Xu, Hongda Mao, Jonathan Chung,
- Abstract summary: Electrocardiograms (ECGs) and photoplethysmograms ( PPGs) are generally used to monitor an individual's cardiovascular health.
In clinical settings, ECGs and PPGs are the main signals used for assessing cardiovascular health, but the equipment necessary for their collection precludes their use in daily monitoring.
We would like to combine the ease with which PPGs can be collected with the information that ECGs provide about cardiovascular health by developing models to synthesize ECG signals from paired PPG signals.
- Score: 5.206775979957893
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Electrocardiograms (ECGs) and photoplethysmograms (PPGs) are generally used to monitor an individual's cardiovascular health. In clinical settings, ECGs and fingertip PPGs are the main signals used for assessing cardiovascular health, but the equipment necessary for their collection precludes their use in daily monitoring. Although PPGs obtained from wrist-worn devices are susceptible to noise due to motion, they have been widely used to continuously monitor cardiovascular health because of their convenience. Therefore, we would like to combine the ease with which PPGs can be collected with the information that ECGs provide about cardiovascular health by developing models to synthesize ECG signals from paired PPG signals. We tackled this problem using generative adversarial networks (GANs) and found that models trained using the original GAN formulations can be successfully used to synthesize ECG signals from which heart rate can be extracted using standard signal processing pipelines. Incorporating a frequency-domain constraint to model training improved the stability of model performance and also the performance on heart rate estimation.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - ConvexECG: Lightweight and Explainable Neural Networks for Personalized, Continuous Cardiac Monitoring [43.23305904110984]
ConvexECG is an explainable and resource-efficient method for reconstructing six-lead electrocardiograms from single-lead data.
We demonstrate that ConvexECG achieves accuracy comparable to larger neural networks while significantly reducing computational overhead.
arXiv Detail & Related papers (2024-09-19T06:14:30Z) - PPG-to-ECG Signal Translation for Continuous Atrial Fibrillation Detection via Attention-based Deep State-Space Modeling [11.617950008187366]
Photoplethysmography ( PPG) is a cost-effective and non-invasive technique that utilizes optical methods to measure cardiac physiology.
Here, we propose a subject-independent attention-based deep state-space model (ADSSM) to translate PPG signals to corresponding ECG waveforms.
arXiv Detail & Related papers (2023-09-27T03:07:46Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Towards Personalized Healthcare in Cardiac Population: The Development
of a Wearable ECG Monitoring System, an ECG Lossy Compression Schema, and a
ResNet-Based AF Detector [19.706400613998703]
The atrial fibrillation (AF) is usually diagnosed using electrocardiography (ECG) which is a risk-free, non-intrusive, and cost-efficient tool.
In this manuscript, the design and implementation of a personalized healthcare system embodying a wearable ECG device, a mobile application, and a back-end server are presented.
arXiv Detail & Related papers (2022-07-11T19:08:46Z) - Identifying Rhythmic Patterns for Face Forgery Detection and
Categorization [46.21354355137544]
We propose a framework for face forgery detection and categorization consisting of: 1) a Spatial-Temporal Filtering Network (STFNet) for PPG signals, and 2) a Spatial-Temporal Interaction Network (STINet) for constraint and interaction of PPG signals.
With insight into the generation of forgery methods, we further propose intra-source and inter-source blending to boost the performance of the framework.
arXiv Detail & Related papers (2022-07-04T04:57:06Z) - Performer: A Novel PPG to ECG Reconstruction Transformer For a Digital
Biomarker of Cardiovascular Disease Detection [0.0]
Cardiovascular diseases (CVDs) have become the top one cause of death; three-quarters of these deaths occur in lower-income communities.
Electrocardiography (ECG) is infeasible for continuous cardiac monitoring due to its requirement for user participation.
Photoplethysmography is easy to collect, but the limited accuracy constrains its clinical usage.
arXiv Detail & Related papers (2022-04-25T17:10:13Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
We introduce a novel method, based on a long short-term memory (LSTM) network, to continuously map forearm EMG activity onto hand kinematics.
Ours is the first reported work on the prediction of hand kinematics that uses this challenging dataset.
Our results suggest that the presented method is suitable for the generation of control signals for the independent and proportional actuation of the multiple DOFs of state-of-the-art hand prostheses.
arXiv Detail & Related papers (2021-04-29T00:11:32Z) - End-to-End Deep Learning for Reliable Cardiac Activity Monitoring using
Seismocardiograms [0.057350354637930076]
SeismoNet aims to provide an end-to-end solution to observe heart activity from Seismocardiogram (SCG) signals.
These SCG signals are motion-based and can be acquired in an easy, user-friendly fashion.
The use of deep learning enables the detection of R-peaks directly from SCG signals in spite of their noise-ridden morphology.
arXiv Detail & Related papers (2020-10-12T13:02:07Z) - CardioGAN: Attentive Generative Adversarial Network with Dual
Discriminators for Synthesis of ECG from PPG [25.305949034527202]
Electrocardiogram (ECG) is the electrical measurement of cardiac activity.
Photoplethysmogram ( PPG) is the optical measurement of changes in blood circulation.
We propose CardioGAN, an adversarial model which takes PPG as input and generates ECG as output.
arXiv Detail & Related papers (2020-09-30T20:49:30Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.