Towards Personalized Healthcare in Cardiac Population: The Development
of a Wearable ECG Monitoring System, an ECG Lossy Compression Schema, and a
ResNet-Based AF Detector
- URL: http://arxiv.org/abs/2207.05138v1
- Date: Mon, 11 Jul 2022 19:08:46 GMT
- Title: Towards Personalized Healthcare in Cardiac Population: The Development
of a Wearable ECG Monitoring System, an ECG Lossy Compression Schema, and a
ResNet-Based AF Detector
- Authors: Wei-Ying Yi, Peng-Fei Liu, Sheung-Lai Lo, Ya-Fen Chan, Yu Zhou, Yee
Leung, Kam-Sang Woo, Alex Pui-Wai Lee, Jia-Min Chen and Kwong-Sak Leung
- Abstract summary: The atrial fibrillation (AF) is usually diagnosed using electrocardiography (ECG) which is a risk-free, non-intrusive, and cost-efficient tool.
In this manuscript, the design and implementation of a personalized healthcare system embodying a wearable ECG device, a mobile application, and a back-end server are presented.
- Score: 19.706400613998703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiovascular diseases (CVDs) are the number one cause of death worldwide.
While there is growing evidence that the atrial fibrillation (AF) has strong
associations with various CVDs, this heart arrhythmia is usually diagnosed
using electrocardiography (ECG) which is a risk-free, non-intrusive, and
cost-efficient tool. Continuously and remotely monitoring the subjects' ECG
information unlocks the potentials of prompt pre-diagnosis and timely
pre-treatment of AF before the development of any life-threatening
conditions/diseases. Ultimately, the CVDs associated mortality could be
reduced. In this manuscript, the design and implementation of a personalized
healthcare system embodying a wearable ECG device, a mobile application, and a
back-end server are presented. This system continuously monitors the users' ECG
information to provide personalized health warnings/feedbacks. The users are
able to communicate with their paired health advisors through this system for
remote diagnoses, interventions, etc. The implemented wearable ECG devices have
been evaluated and showed excellent intra-consistency (CVRMS=5.5%), acceptable
inter-consistency (CVRMS=12.1%), and negligible RR-interval errors (ARE<1.4%).
To boost the battery life of the wearable devices, a lossy compression schema
utilizing the quasi-periodic feature of ECG signals to achieve compression was
proposed. Compared to the recognized schemata, it outperformed the others in
terms of compression efficiency and distortion, and achieved at least 2x of CR
at a certain PRD or RMSE for ECG signals from the MIT-BIH database. To enable
automated AF diagnosis/screening in the proposed system, a ResNet-based AF
detector was developed. For the ECG records from the 2017 PhysioNet CinC
challenge, this AF detector obtained an average testing F1=85.10% and a best
testing F1=87.31%, outperforming the state-of-the-art.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - SQUWA: Signal Quality Aware DNN Architecture for Enhanced Accuracy in Atrial Fibrillation Detection from Noisy PPG Signals [37.788535094404644]
Atrial fibrillation (AF) significantly increases the risk of stroke, heart disease, and mortality.
Photoplethysmography ( PPG) signals are susceptible to corruption from motion artifacts and other factors often encountered in ambulatory settings.
We propose a novel deep learning model, designed to learn how to retain accurate predictions from partially corrupted PPG.
arXiv Detail & Related papers (2024-04-15T01:07:08Z) - EB-GAME: A Game-Changer in ECG Heartbeat Anomaly Detection [7.574088346030774]
This paper focuses on detecting abnormal signals in electrocardi-ograms (ECGs) using only labels from normal signals as training data.
In-spired by self-supervised vision transformers, which learn by dividing images into patches, and masked auto-encoders, we introduce the ECG Heartbeat Anomaly Detection model, EB-GAME.
arXiv Detail & Related papers (2024-04-08T13:01:59Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly
Detection [33.48389041651675]
Electrocardiogram (ECG) is a widely used diagnostic tool for detecting heart conditions.
Rare cardiac diseases may be underdiagnosed using traditional ECG analysis, considering that no training dataset can exhaust all possible cardiac disorders.
This paper proposes using anomaly detection to identify any unhealthy status, with normal ECGs solely for training.
arXiv Detail & Related papers (2023-08-03T09:16:57Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Performer: A Novel PPG to ECG Reconstruction Transformer For a Digital
Biomarker of Cardiovascular Disease Detection [0.0]
Cardiovascular diseases (CVDs) have become the top one cause of death; three-quarters of these deaths occur in lower-income communities.
Electrocardiography (ECG) is infeasible for continuous cardiac monitoring due to its requirement for user participation.
Photoplethysmography is easy to collect, but the limited accuracy constrains its clinical usage.
arXiv Detail & Related papers (2022-04-25T17:10:13Z) - Blind ECG Restoration by Operational Cycle-GANs [15.264145425539128]
Continuous long-term monitoring of electrocardiography signals is crucial for the early detection of cardiac abnormalities such as arrhythmia.
Non-clinical ECG recordings often suffer from severe artifacts such as baseline wander, signal cuts, motion artifacts, variations on QRS amplitude, noise, and other interferences.
We propose a novel approach for blind ECG restoration using cycle-consistent generative adversarial networks (Cycle-GANs)
arXiv Detail & Related papers (2022-01-29T19:47:17Z) - ECG Signal Super-resolution by Considering Reconstruction and Cardiac
Arrhythmias Classification Loss [0.0]
We propose a deep-learning-based ECG signal super-resolution framework (termed ESRNet) to recover compressed ECG signals.
Experimental results show that the proposed ESRNet framework can well reconstruct ECG signals from the 10-times compressed ones.
arXiv Detail & Related papers (2020-12-07T15:43:50Z) - CardioGAN: Attentive Generative Adversarial Network with Dual
Discriminators for Synthesis of ECG from PPG [25.305949034527202]
Electrocardiogram (ECG) is the electrical measurement of cardiac activity.
Photoplethysmogram ( PPG) is the optical measurement of changes in blood circulation.
We propose CardioGAN, an adversarial model which takes PPG as input and generates ECG as output.
arXiv Detail & Related papers (2020-09-30T20:49:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.