Using Explainable AI for EEG-based Reduced Montage Neonatal Seizure Detection
- URL: http://arxiv.org/abs/2406.16908v3
- Date: Wed, 14 Aug 2024 11:07:41 GMT
- Title: Using Explainable AI for EEG-based Reduced Montage Neonatal Seizure Detection
- Authors: Dinuka Sandun Udayantha, Kavindu Weerasinghe, Nima Wickramasinghe, Akila Abeyratne, Kithmin Wickremasinghe, Jithangi Wanigasinghe, Anjula De Silva, Chamira U. S. Edussooriya,
- Abstract summary: The gold-standard for neonatal seizure detection currently relies on continuous video-EEG monitoring.
A novel explainable deep learning model to automate the neonatal seizure detection process with a reduced EEG montage is proposed.
The presented model achieves an absolute improvement of 8.31% and 42.86% in area under curve (AUC) and recall, respectively.
- Score: 2.206534289238751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The neonatal period is the most vulnerable time for the development of seizures. Seizures in the immature brain lead to detrimental consequences, therefore require early diagnosis. The gold-standard for neonatal seizure detection currently relies on continuous video-EEG monitoring; which involves recording multi-channel electroencephalogram (EEG) alongside real-time video monitoring within a neonatal intensive care unit (NICU). However, video-EEG monitoring technology requires clinical expertise and is often limited to technologically advanced and resourceful settings. Cost-effective new techniques could help the medical fraternity make an accurate diagnosis and advocate treatment without delay. In this work, a novel explainable deep learning model to automate the neonatal seizure detection process with a reduced EEG montage is proposed, which employs convolutional nets, graph attention layers, and fully connected layers. Beyond its ability to detect seizures in real-time with a reduced montage, this model offers the unique advantage of real-time interpretability. By evaluating the performance on the Zenodo dataset with 10-fold cross-validation, the presented model achieves an absolute improvement of 8.31% and 42.86% in area under curve (AUC) and recall, respectively.
Related papers
- SincVAE: a New Approach to Improve Anomaly Detection on EEG Data Using SincNet and Variational Autoencoder [0.0]
This work proposes a semi-supervised approach for detecting epileptic seizures from EEG data, utilizing a novel Deep Learning-based method called SincVAE.
Results indicate that SincVAE improves seizure detection in EEG data and is capable of identifying early seizures during the preictal stage as well as monitoring patients throughout the postictal stage.
arXiv Detail & Related papers (2024-06-25T13:21:01Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Protecting the Future: Neonatal Seizure Detection with Spatial-Temporal
Modeling [21.955397001414187]
We propose a deep learning framework, namely STATENet, to address the exclusive challenges with exquisite designs at the temporal, spatial and model levels.
The experiments over the real-world large-scale neonatal EEG dataset illustrate that our framework achieves significantly better seizure detection performance.
arXiv Detail & Related papers (2023-07-02T14:28:12Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
A task-oriented self-supervised learning approach is proposed to train a more effective anomaly detector.
A specific two branch convolutional neural network with larger kernels is designed as the feature extractor.
The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs.
arXiv Detail & Related papers (2022-07-04T13:15:08Z) - Scalable Machine Learning Architecture for Neonatal Seizure Detection on
Ultra-Edge Devices [0.0]
This research presents a machine learning (ML) based architecture that operates with comparable predictive performance as previous models.
Our architecture achieved a best sensitivity of 87%, which is 6% more than that of the standard ML model chosen in this study.
arXiv Detail & Related papers (2021-11-29T12:42:13Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - High Frequency EEG Artifact Detection with Uncertainty via Early Exit
Paradigm [70.50499513259322]
Current artifact detection pipelines are resource-hungry and rely heavily on hand-crafted features.
We propose E4G, a deep learning framework for high frequency EEG artifact detection.
Our framework exploits the early exit paradigm, building an implicit ensemble of models capable of capturing uncertainty.
arXiv Detail & Related papers (2021-07-21T07:05:42Z) - An interpretable object detection based model for the diagnosis of
neonatal lung diseases using Ultrasound images [0.0]
Lung Ultrasound (LUS) has been increasingly used to diagnose and monitor different lung diseases in neonates.
Mixed artifact patterns found in different respiratory diseases may limit LUS readability by the operator.
We present a unique approach for extracting seven meaningful LUS features that can be easily associated with a specific lung condition.
arXiv Detail & Related papers (2021-05-21T01:12:35Z) - Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology [62.997667081978825]
Lack of money, absence of qualified specialists, and low level of trust to the correction methods are the main issues that affect the in-time diagnoses of ASD.
Our team developed the algorithm that will be able to predict the chances of ASD according to the information from the gaze activity of the child.
arXiv Detail & Related papers (2020-08-21T20:22:55Z) - A Convolutional Neural Network for gaze preference detection: A
potential tool for diagnostics of autism spectrum disorder in children [0.0]
We propose a convolutional neural network (CNN) algorithm for gaze prediction using images extracted from a one-minute stimulus video.
Our model achieved a high accuracy rate and robustness for prediction of gaze direction with independent persons.
arXiv Detail & Related papers (2020-07-28T18:47:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.