Enhancing Diagnostic Reliability of Foundation Model with Uncertainty Estimation in OCT Images
- URL: http://arxiv.org/abs/2406.16942v1
- Date: Tue, 18 Jun 2024 03:04:52 GMT
- Title: Enhancing Diagnostic Reliability of Foundation Model with Uncertainty Estimation in OCT Images
- Authors: Yuanyuan Peng, Aidi Lin, Meng Wang, Tian Lin, Ke Zou, Yinglin Cheng, Tingkun Shi, Xulong Liao, Lixia Feng, Zhen Liang, Xinjian Chen, Huazhu Fu, Haoyu Chen,
- Abstract summary: We developed a foundation model with uncertainty estimation (FMUE) to detect 11 retinal conditions on optical coherence tomography ( OCT)
FMUE achieved a higher F1 score of 96.76% than two state-of-the-art algorithms, RETFound and UIOS, and got further improvement with thresholding strategy to 98.44%.
Our model is superior to two ophthalmologists with a higher F1 score (95.17% vs. 61.93% &71.72%)
- Score: 41.002573031087856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inability to express the confidence level and detect unseen classes has limited the clinical implementation of artificial intelligence in the real-world. We developed a foundation model with uncertainty estimation (FMUE) to detect 11 retinal conditions on optical coherence tomography (OCT). In the internal test set, FMUE achieved a higher F1 score of 96.76% than two state-of-the-art algorithms, RETFound and UIOS, and got further improvement with thresholding strategy to 98.44%. In the external test sets obtained from other OCT devices, FMUE achieved an accuracy of 88.75% and 92.73% before and after thresholding. Our model is superior to two ophthalmologists with a higher F1 score (95.17% vs. 61.93% &71.72%). Besides, our model correctly predicts high uncertainty scores for samples with ambiguous features, of non-target-category diseases, or with low-quality to prompt manual checks and prevent misdiagnosis. FMUE provides a trustworthy method for automatic retinal anomalies detection in the real-world clinical open set environment.
Related papers
- Is an Ultra Large Natural Image-Based Foundation Model Superior to a Retina-Specific Model for Detecting Ocular and Systemic Diseases? [15.146396276161937]
RETFound and DINOv2 models were evaluated for ocular disease detection and systemic disease prediction tasks.
RETFound achieved superior performance over all DINOv2 models in predicting heart failure, infarction, and ischaemic stroke.
arXiv Detail & Related papers (2025-02-10T09:31:39Z) - An Intrinsically Explainable Approach to Detecting Vertebral Compression Fractures in CT Scans via Neurosymbolic Modeling [9.108675519106319]
Vertebral compression fractures (VCFs) are a common and potentially serious consequence of osteoporosis.
In high-stakes scenarios like opportunistic medical diagnosis, model interpretability is a key factor for the adoption of AI recommendations.
We introduce a neurosymbolic approach for VCF detection in CT volumes.
arXiv Detail & Related papers (2024-12-23T04:01:44Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
This study explores the use of Federated Learning (FL) for stenosis detection in coronary angiography images (CA)
Two heterogeneous datasets from two institutions were considered: dataset 1 includes 1219 images from 200 patients, which we acquired at the Ospedale Riuniti of Ancona (Italy)
dataset 2 includes 7492 sequential images from 90 patients from a previous study available in the literature.
arXiv Detail & Related papers (2023-10-30T11:13:40Z) - Reconstruction of Patient-Specific Confounders in AI-based Radiologic
Image Interpretation using Generative Pretraining [12.656718786788758]
We propose a self-conditioned diffusion model termed DiffChest and train it on a dataset of chest radiographs.
DiffChest explains classifications on a patient-specific level and visualizes the confounding factors that may mislead the model.
Our findings highlight the potential of pretraining based on diffusion models in medical image classification.
arXiv Detail & Related papers (2023-09-29T10:38:08Z) - Uncertainty-inspired Open Set Learning for Retinal Anomaly
Identification [71.06194656633447]
We establish an uncertainty-inspired open-set (UIOS) model, which was trained with fundus images of 9 retinal conditions.
Our UIOS model with thresholding strategy achieved an F1 score of 99.55%, 97.01% and 91.91% for the internal testing set.
UIOS correctly predicted high uncertainty scores, which would prompt the need for a manual check in the datasets of non-target categories retinal diseases, low-quality fundus images, and non-fundus images.
arXiv Detail & Related papers (2023-04-08T10:47:41Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs [0.0]
We propose a multi-label disease prediction model that allows the detection of more than one pathology at a given test time.
Our proposed model achieved the highest AUC score of 0.896 for the condition Cardiomegaly.
arXiv Detail & Related papers (2022-02-08T00:43:57Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.