Integrating uncertainty in deep neural networks for MRI based stroke
analysis
- URL: http://arxiv.org/abs/2008.06332v1
- Date: Thu, 13 Aug 2020 09:50:17 GMT
- Title: Integrating uncertainty in deep neural networks for MRI based stroke
analysis
- Authors: Lisa Herzog, Elvis Murina, Oliver D\"urr, Susanne Wegener, Beate Sick
- Abstract summary: We present a Bayesian Convolutional Neural Network (CNN) yielding a probability for a stroke lesion on 2D Magnetic Resonance (MR) images.
In a cohort of 511 patients, our CNN achieved an accuracy of 95.33% at the image-level representing a significant improvement of 2% over a non-Bayesian counterpart.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: At present, the majority of the proposed Deep Learning (DL) methods provide
point predictions without quantifying the models uncertainty. However, a
quantification of the reliability of automated image analysis is essential, in
particular in medicine when physicians rely on the results for making critical
treatment decisions. In this work, we provide an entire framework to diagnose
ischemic stroke patients incorporating Bayesian uncertainty into the analysis
procedure. We present a Bayesian Convolutional Neural Network (CNN) yielding a
probability for a stroke lesion on 2D Magnetic Resonance (MR) images with
corresponding uncertainty information about the reliability of the prediction.
For patient-level diagnoses, different aggregation methods are proposed and
evaluated, which combine the single image-level predictions. Those methods take
advantage of the uncertainty in image predictions and report model uncertainty
at the patient-level. In a cohort of 511 patients, our Bayesian CNN achieved an
accuracy of 95.33% at the image-level representing a significant improvement of
2% over a non-Bayesian counterpart. The best patient aggregation method yielded
95.89% of accuracy. Integrating uncertainty information about image predictions
in aggregation models resulted in higher uncertainty measures to false patient
classifications, which enabled to filter critical patient diagnoses that are
supposed to be closer examined by a medical doctor. We therefore recommend
using Bayesian approaches not only for improved image-level prediction and
uncertainty estimation but also for the detection of uncertain aggregations at
the patient-level.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Structural-Based Uncertainty in Deep Learning Across Anatomical Scales: Analysis in White Matter Lesion Segmentation [8.64414399041931]
Uncertainty quantification (UQ) is an indicator of the trustworthiness of automated deep-learning (DL) tools in the context of white matter lesion (WML) segmentation.
We develop measures for quantifying uncertainty at lesion and patient scales, derived from structural prediction discrepancies.
The results from a multi-centric MRI dataset of 444 patients demonstrate that our proposed measures more effectively capture model errors at the lesion and patient scales.
arXiv Detail & Related papers (2023-11-15T13:04:57Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
Left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions.
Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images.
This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction.
arXiv Detail & Related papers (2023-10-30T13:44:55Z) - Improving Image-Based Precision Medicine with Uncertainty-Aware Causal
Models [3.5770353345663053]
We use Bayesian deep learning for estimating the posterior distribution over factual and counterfactual outcomes on several treatments.
We train and evaluate this model to predict future new and enlarging T2 lesion counts on a large, multi-center dataset of MR brain images of patients with multiple sclerosis.
arXiv Detail & Related papers (2023-05-05T20:08:40Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Disentangled Uncertainty and Out of Distribution Detection in Medical
Generative Models [7.6146285961466]
We study disentangled uncertainties in image to image translation tasks in the medical domain.
We use CycleGAN to convert T1-weighted brain MRI scans to T2-weighted brain MRI scans.
arXiv Detail & Related papers (2022-11-11T14:45:16Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
A lack of statistically rigorous uncertainty quantification is a significant factor undermining trust in AI results.
Recent developments in distribution-free uncertainty quantification present practical solutions for these issues.
We demonstrate a technique for forming ordinal prediction sets that are guaranteed to contain the correct stenosis severity.
arXiv Detail & Related papers (2022-07-05T18:01:20Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
We introduce a Bayesian variational framework to quantify the model-immanent (epistemic) uncertainty.
We demonstrate that our approach yields competitive results for undersampled MRI reconstruction.
arXiv Detail & Related papers (2021-02-12T18:08:14Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.