論文の概要: Are Vision xLSTM Embedded UNet More Reliable in Medical 3D Image Segmentation?
- arxiv url: http://arxiv.org/abs/2406.16993v1
- Date: Mon, 24 Jun 2024 08:01:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 18:50:40.691610
- Title: Are Vision xLSTM Embedded UNet More Reliable in Medical 3D Image Segmentation?
- Title(参考訳): Vision xLSTM Embedded UNetは医療用3次元画像のセグメンテーションで信頼性が高いか?
- Authors: Pallabi Dutta, Soham Bose, Swalpa Kumar Roy, Sushmita Mitra,
- Abstract要約: 本稿では,CNNとVision-xLSTM(Vision-xLSTM)モデルの統合について,UVixLSTMと呼ばれる新しいアプローチを導入することにより検討する。
Vision-xLSTMブロックは、CNN特徴マップから抽出されたパッチ内の時間的およびグローバルな関係をキャプチャする。
UVixLSTMは、公開データセットの最先端ネットワークよりも優れたパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 3.1777394653936937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancement of developing efficient medical image segmentation has evolved from initial dependence on Convolutional Neural Networks (CNNs) to the present investigation of hybrid models that combine CNNs with Vision Transformers. Furthermore, there is an increasing focus on creating architectures that are both high-performing in medical image segmentation tasks and computationally efficient to be deployed on systems with limited resources. Although transformers have several advantages like capturing global dependencies in the input data, they face challenges such as high computational and memory complexity. This paper investigates the integration of CNNs and Vision Extended Long Short-Term Memory (Vision-xLSTM) models by introducing a novel approach called UVixLSTM. The Vision-xLSTM blocks captures temporal and global relationships within the patches extracted from the CNN feature maps. The convolutional feature reconstruction path upsamples the output volume from the Vision-xLSTM blocks to produce the segmentation output. Our primary objective is to propose that Vision-xLSTM forms a reliable backbone for medical image segmentation tasks, offering excellent segmentation performance and reduced computational complexity. UVixLSTM exhibits superior performance compared to state-of-the-art networks on the publicly-available Synapse dataset. Code is available at: https://github.com/duttapallabi2907/UVixLSTM
- Abstract(参考訳): 効率的な医用画像セグメンテーションの開発は、畳み込みニューラルネットワーク(CNN)への初期依存から、CNNとビジョントランスフォーマーを組み合わせたハイブリッドモデルの研究へと発展してきた。
さらに、医療画像のセグメンテーションタスクの高性能化と、限られたリソースを持つシステムに展開する計算効率の両面において、アーキテクチャの作成に焦点が当てられている。
トランスフォーマーには、入力データのグローバルな依存関係をキャプチャするなど、いくつかの利点があるが、高い計算量やメモリ複雑性といった課題に直面している。
本稿では,CNNとVision-xLSTM(Vision-xLSTM)モデルの統合について,UVixLSTMと呼ばれる新しいアプローチを導入することにより検討する。
Vision-xLSTMブロックは、CNN特徴マップから抽出されたパッチ内の時間的およびグローバルな関係をキャプチャする。
畳み込み特徴再構成パスは、Vision-xLSTMブロックから出力ボリュームを増幅し、セグメンテーション出力を生成する。
我々の第一の目的は、Vision-xLSTMが医用画像分割タスクの信頼性の高いバックボーンを形成し、セグメンテーション性能と計算複雑性の低減を提供することである。
UVixLSTMは、公開されているSynapseデータセットの最先端ネットワークよりも優れたパフォーマンスを示している。
https://github.com/duttapallabi2907/UVixLSTM
関連論文リスト
- xLSTM-UNet can be an Effective 2D & 3D Medical Image Segmentation Backbone with Vision-LSTM (ViL) better than its Mamba Counterpart [13.812935743270517]
医用画像セグメンテーションのバックボーンとしてVision-LSTM(xLSTM)を利用するUNet構造化ディープラーニングニューラルネットワークであるxLSTM-UNetを提案する。
xLSTMはLong Short-Term Memory (LSTM) ネットワークの後継として最近提案された。
以上の結果から,XLSTM-UNetはCNNベース,Transformerベース,およびMambaベースセグメンテーションネットワークの性能を一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2024-07-01T17:59:54Z) - Seg-LSTM: Performance of xLSTM for Semantic Segmentation of Remotely Sensed Images [1.5954224931801726]
本研究は、リモートセンシング画像のセマンティックセグメンテーションにおけるビジョン-LSTMの有効性を評価するための最初の試みである。
セグメンテーションにおけるVision-LSTMの性能は,ほとんどの比較試験において,Vision-TransformersベースのモデルとVision-Mambaベースのモデルよりも限定的であり,概して劣っていることがわかった。
論文 参考訳(メタデータ) (2024-06-20T08:01:28Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - VM-UNet: Vision Mamba UNet for Medical Image Segmentation [2.3876474175791302]
医用画像セグメンテーションのためのU字型アーキテクチャモデルVision Mamba UNet(VM-UNet)を提案する。
我々はISIC17,ISIC18,Synapseデータセットの総合的な実験を行い,VM-UNetが医用画像分割タスクにおいて競争力を発揮することを示す。
論文 参考訳(メタデータ) (2024-02-04T13:37:21Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Video-SwinUNet: Spatio-temporal Deep Learning Framework for VFSS
Instance Segmentation [10.789826145990016]
本稿では,医用ビデオセグメンテーションのためのディープラーニングフレームワークを提案する。
本フレームワークは, 時間次元にまたがる近傍のフレームから特徴を明示的に抽出する。
テンポラリな機能ブレンダーを組み込んで、ハイレベルな時間的特徴をトークン化し、Swin Transformerを介してエンコードされた強力なグローバル機能を形成する。
論文 参考訳(メタデータ) (2023-02-22T12:09:39Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
本稿では,トランスフォーマーに基づく動的オンデマンドネットワーク(TransDoDNet)を提案する。
動的ヘッドにより、ネットワークは複数のセグメンテーションタスクを柔軟に達成することができる。
我々はMOTSと呼ばれる大規模にラベル付けされたMulti-Organ and tumorベンチマークを作成し、他の競合相手よりもTransDoDNetの方が優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-13T13:03:09Z) - Video-TransUNet: Temporally Blended Vision Transformer for CT VFSS
Instance Segmentation [11.575821326313607]
本稿では,TransUNetの深層学習フレームワークに時間的特徴ブレンドを組み込んだ医療用CTビデオのセグメンテーションのための深層アーキテクチャであるVideo-TransUNetを提案する。
特に,提案手法は,ResNet CNNバックボーンによるフレーム表現,テンポラルコンテキストモジュールによるマルチフレーム機能ブレンディング,UNetベースの畳み込みデコナールアーキテクチャによる複数ターゲットの再構築,などを実現する。
論文 参考訳(メタデータ) (2022-08-17T14:28:58Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
畳み込みニューラルネットワーク(CNN)は、現代の3D医療画像セグメンテーションのデファクトスタンダードとなっている。
本稿では,bf畳み込みニューラルネットワークとbfトランスbf(cotr)を効率良く橋渡しし,正確な3次元医用画像分割を実現する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T13:34:22Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
医用画像のセグメンテーションは医療システムの開発に必須の前提条件である。
様々な医療画像セグメンテーションタスクにおいて、U-Netとして知られるu字型アーキテクチャがデファクトスタンダードとなっている。
医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netの両方を有効活用するTransUNetを提案する。
論文 参考訳(メタデータ) (2021-02-08T16:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。