A large language model for predicting T cell receptor-antigen binding specificity
- URL: http://arxiv.org/abs/2406.16995v1
- Date: Mon, 24 Jun 2024 08:36:40 GMT
- Title: A large language model for predicting T cell receptor-antigen binding specificity
- Authors: Xing Fang, Chenpeng Yu, Shiye Tian, Hui Liu,
- Abstract summary: We propose a Masked Language Model (MLM) to overcome limitations in model generalization.
Specifically, we randomly masked sequence segments and train tcrLM to infer the masked segment, thereby extract expressive feature from TCR sequences.
Our extensive experimental results demonstrate that tcrLM achieved AUC values of 0.937 and 0.933 on independent test sets and external validation sets.
- Score: 4.120928123714289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The human immune response depends on the binding of T-cell receptors (TCRs) to antigens (pTCR), which elicits the T cells to eliminate viruses, tumor cells, and other pathogens. The ability of human immunity system responding to unknown viruses and bacteria stems from the TCR diversity. However, this vast diversity poses challenges on the TCR-antigen binding prediction methods. In this study, we propose a Masked Language Model (MLM), referred to as tcrLM, to overcome limitations in model generalization. Specifically, we randomly masked sequence segments and train tcrLM to infer the masked segment, thereby extract expressive feature from TCR sequences. Meanwhile, we introduced virtual adversarial training techniques to enhance the model's robustness. We built the largest TCR CDR3 sequence dataset to date (comprising 2,277,773,840 residuals), and pre-trained tcrLM on this dataset. Our extensive experimental results demonstrate that tcrLM achieved AUC values of 0.937 and 0.933 on independent test sets and external validation sets, respectively, which remarkably outperformed four previously published prediction methods. On a large-scale COVID-19 pTCR binding test set, our method outperforms the current state-of-the-art method by at least 8%, highlighting the generalizability of our method. Furthermore, we validated that our approach effectively predicts immunotherapy response and clinical outcomes on a clinical cohorts. These findings clearly indicate that tcrLM exhibits significant potential in predicting antigenic immunogenicity.
Related papers
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - Estimating the Causal Effects of T Cell Receptors [20.01390828400336]
We introduce a method to infer the causal effects of T cell receptor sequences on patient outcomes.
Our approach corrects for unobserved confounders, such as a patient's environment and life history.
As a demonstration, we use it to analyze the effects of TCRs on COVID-19 severity.
arXiv Detail & Related papers (2024-10-18T02:45:14Z) - TCR-GPT: Integrating Autoregressive Model and Reinforcement Learning for T-Cell Receptor Repertoires Generation [6.920411338236452]
T-cell receptors (TCRs) play a crucial role in the immune system by recognizing and binding to specific antigens presented by infected or cancerous cells.
Language models, such as auto-regressive transformers, offer a powerful solution by learning the probability distributions of TCR repertoires.
We introduce TCR-GPT, a probabilistic model built on a decoder-only transformer architecture, designed to uncover and replicate sequence patterns in TCR repertoires.
arXiv Detail & Related papers (2024-08-02T10:16:28Z) - AIRIVA: A Deep Generative Model of Adaptive Immune Repertoires [6.918664738267051]
We present an Adaptive Immune Repertoire-Invariant Variational Autoencoder (AIRIVA) that learns a low-dimensional, interpretable, and compositional representation of TCR repertoires to disentangle systematic effects in repertoires.
arXiv Detail & Related papers (2023-04-26T14:40:35Z) - T Cell Receptor Protein Sequences and Sparse Coding: A Novel Approach to
Cancer Classification [4.824821328103934]
T cell receptors (TCRs) are essential proteins for the adaptive immune system.
Recent advancements in sequencing technologies have enabled the comprehensive profiling of TCR repertoires.
This has led to the discovery of TCRs with potent anti-cancer activity and the development of TCR-based immunotherapies.
arXiv Detail & Related papers (2023-04-25T20:43:41Z) - Reprogramming Pretrained Language Models for Antibody Sequence Infilling [72.13295049594585]
Computational design of antibodies involves generating novel and diverse sequences, while maintaining structural consistency.
Recent deep learning models have shown impressive results, however the limited number of known antibody sequence/structure pairs frequently leads to degraded performance.
In our work we address this challenge by leveraging Model Reprogramming (MR), which repurposes pretrained models on a source language to adapt to the tasks that are in a different language and have scarce data.
arXiv Detail & Related papers (2022-10-05T20:44:55Z) - Attention-aware contrastive learning for predicting T cell
receptor-antigen binding specificity [7.365824008999903]
It has been verified that only a small fraction of the neoantigens presented by MHC class I molecules on the cell surface can elicit T cells.
We propose an attentive-mask contrastive learning model, ATMTCR, for inferring TCR-antigen binding specificity.
arXiv Detail & Related papers (2022-05-17T10:53:32Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Confidence-guided Lesion Mask-based Simultaneous Synthesis of Anatomic
and Molecular MR Images in Patients with Post-treatment Malignant Gliomas [65.64363834322333]
Confidence Guided SAMR (CG-SAMR) synthesizes data from lesion information to multi-modal anatomic sequences.
module guides the synthesis based on confidence measure about the intermediate results.
experiments on real clinical data demonstrate that the proposed model can perform better than the state-of-theart synthesis methods.
arXiv Detail & Related papers (2020-08-06T20:20:22Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.