論文の概要: Meta-learning and Data Augmentation for Stress Testing Forecasting Models
- arxiv url: http://arxiv.org/abs/2406.17008v1
- Date: Mon, 24 Jun 2024 17:59:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 18:50:40.668826
- Title: Meta-learning and Data Augmentation for Stress Testing Forecasting Models
- Title(参考訳): ストレステスト予測モデルのためのメタラーニングとデータ強化
- Authors: Ricardo Inácio, Vitor Cerqueira, Marília Barandas, Carlos Soares,
- Abstract要約: モデルがストレスにさらされていると考えられるのは、高次のエラーや不確実性の増加など、ネガティブな振る舞いを示す場合である。
本稿では,MAST(Meta-learning and data Augmentation for Stress Testing)と呼ばれる新しいフレームワークに貢献する。
- 参考スコア(独自算出の注目度): 0.33554367023486936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The effectiveness of univariate forecasting models is often hampered by conditions that cause them stress. A model is considered to be under stress if it shows a negative behaviour, such as higher-than-usual errors or increased uncertainty. Understanding the factors that cause stress to forecasting models is important to improve their reliability, transparency, and utility. This paper addresses this problem by contributing with a novel framework called MAST (Meta-learning and data Augmentation for Stress Testing). The proposed approach aims to model and characterize stress in univariate time series forecasting models, focusing on conditions where they exhibit large errors. In particular, MAST is a meta-learning approach that predicts the probability that a given model will perform poorly on a given time series based on a set of statistical time series features. MAST also encompasses a novel data augmentation technique based on oversampling to improve the metadata concerning stress. We conducted experiments using three benchmark datasets that contain a total of 49.794 time series to validate the performance of MAST. The results suggest that the proposed approach is able to identify conditions that lead to large errors. The method and experiments are publicly available in a repository.
- Abstract(参考訳): 単変量予測モデルの有効性は、しばしばストレスを引き起こす条件によって妨げられる。
モデルがストレスにさらされていると考えられるのは、高次のエラーや不確実性の増加など、ネガティブな振る舞いを示す場合である。
予測モデルにストレスを引き起こす要因を理解することは、信頼性、透明性、実用性を改善するために重要です。
本稿では,MAST(Meta-learning and data Augmentation for Stress Testing)と呼ばれる新しいフレームワークに貢献することで,この問題に対処する。
提案手法は, 単変量時系列予測モデルにおけるストレスをモデル化し, 特徴付けることを目的としている。
特に、MASTはメタラーニング手法であり、統計時系列の一連の特徴に基づいて、与えられたモデルが与えられた時系列で不十分に動作する確率を予測する。
MASTはまた、ストレスに関するメタデータを改善するために、オーバーサンプリングに基づく新しいデータ拡張技術を含んでいる。
MASTの性能を検証するために, 合計49.794時系列を含む3つのベンチマークデータセットを用いて実験を行った。
その結果,提案手法は大きな誤差につながる条件を特定可能であることが示唆された。
メソッドと実験はリポジトリで公開されています。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - RobustTSF: Towards Theory and Design of Robust Time Series Forecasting
with Anomalies [28.59935971037066]
汚染データからロバストな予測モデルを自動的に学習する手法を開発した。
そこで本研究では,ロバストな予測モデルを学習するための単純かつ効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-03T05:13:09Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Surrogate uncertainty estimation for your time series forecasting black-box: learn when to trust [2.0393477576774752]
本研究では不確実性推定手法を紹介する。
妥当な不確実性推定を伴うベース回帰モデルを強化する。
各種時系列予測データを用いて, 代理モデルに基づく手法により, 精度の高い信頼区間が得られることがわかった。
論文 参考訳(メタデータ) (2023-02-06T14:52:56Z) - Statistics and Deep Learning-based Hybrid Model for Interpretable
Anomaly Detection [0.0]
ハイブリッド手法は、予測タスクと予測タスクの両方において、純粋統計的および純粋深層学習法より優れていることが示されている。
MES-LSTMは、これらの課題を克服する解釈可能な異常検出モデルである。
論文 参考訳(メタデータ) (2022-02-25T14:17:03Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
テスト時間ロバスト化の問題、すなわちモデルロバスト性を改善するためにテストインプットを用いて検討する。
最近の先行研究ではテスト時間適応法が提案されているが、それぞれ追加の仮定を導入している。
モデルが確率的で適応可能な任意のテスト環境で使用できるシンプルなアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-18T17:55:11Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Improving Maximum Likelihood Training for Text Generation with Density
Ratio Estimation [51.091890311312085]
本稿では,テキスト生成で遭遇する大規模なサンプル空間において,効率よく安定な自動回帰シーケンス生成モデルのトレーニング手法を提案する。
本手法は,品質と多様性の両面で,最大類似度推定や他の最先端シーケンス生成モデルよりも安定に優れている。
論文 参考訳(メタデータ) (2020-07-12T15:31:24Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
本稿では,モデルアーキテクチャ,正規化手法,損失関数が分類結果の予測性能および信頼性に与える影響について検討する。
その結果,高い成功率を達成するためには,正則化と推論手法の正しい選択が重要であることが明らかとなった。
論文 参考訳(メタデータ) (2020-03-17T10:13:31Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。