論文の概要: RobustTSF: Towards Theory and Design of Robust Time Series Forecasting
with Anomalies
- arxiv url: http://arxiv.org/abs/2402.02032v1
- Date: Sat, 3 Feb 2024 05:13:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-06 22:39:30.151583
- Title: RobustTSF: Towards Theory and Design of Robust Time Series Forecasting
with Anomalies
- Title(参考訳): robusttsf:異常を考慮したロバスト時系列予測の理論と設計
- Authors: Hao Cheng, Qingsong Wen, Yang Liu, Liang Sun
- Abstract要約: 汚染データからロバストな予測モデルを自動的に学習する手法を開発した。
そこで本研究では,ロバストな予測モデルを学習するための単純かつ効率的なアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 28.59935971037066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting is an important and forefront task in many real-world
applications. However, most of time series forecasting techniques assume that
the training data is clean without anomalies. This assumption is unrealistic
since the collected time series data can be contaminated in practice. The
forecasting model will be inferior if it is directly trained by time series
with anomalies. Thus it is essential to develop methods to automatically learn
a robust forecasting model from the contaminated data. In this paper, we first
statistically define three types of anomalies, then theoretically and
experimentally analyze the loss robustness and sample robustness when these
anomalies exist. Based on our analyses, we propose a simple and efficient
algorithm to learn a robust forecasting model. Extensive experiments show that
our method is highly robust and outperforms all existing approaches. The code
is available at https://github.com/haochenglouis/RobustTSF.
- Abstract(参考訳): 時系列予測は多くの実世界のアプリケーションにおいて重要かつ最前線の課題である。
しかし、ほとんどの時系列予測技術は、トレーニングデータは異常なくクリーンであると仮定している。
この仮定は、収集された時系列データを実際に汚染することができるため、非現実的である。
予測モデルは、異常のある時系列によって直接訓練された場合、劣る。
したがって,汚染データからロバスト予測モデルを自動的に学習する手法を開発することが不可欠である。
本稿では,まず3種類の異常を統計的に定義し,これらの異常が存在する場合の損失ロバスト性および試料ロバスト性について理論的および実験的に解析する。
そこで本研究では,ロバスト予測モデルを学ぶための簡便で効率的なアルゴリズムを提案する。
広範な実験により,本手法は高いロバスト性を示し,既存の手法よりも優れていることがわかった。
コードはhttps://github.com/haochenglouis/robusttsfで入手できる。
関連論文リスト
- Meta-learning and Data Augmentation for Stress Testing Forecasting Models [0.33554367023486936]
モデルがストレスにさらされていると考えられるのは、高次のエラーや不確実性の増加など、ネガティブな振る舞いを示す場合である。
本稿では,MAST(Meta-learning and data Augmentation for Stress Testing)と呼ばれる新しいフレームワークに貢献する。
論文 参考訳(メタデータ) (2024-06-24T17:59:33Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation
for Time Series [49.992908221544624]
時系列データは、しばしば多くの欠落した値を示し、これは時系列計算タスクである。
従来の深層学習法は時系列計算に有効であることが示されている。
本研究では,不確実性のある高精度な計算を行う非生成時系列計算法を提案する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - ForecastPFN: Synthetically-Trained Zero-Shot Forecasting [16.12148632541671]
ForecastPFNは、新しい合成データ分布に基づいて純粋に訓練された最初のゼロショット予測モデルである。
ForecastPFNによるゼロショット予測は、最先端の予測手法よりも正確で高速であることを示す。
論文 参考訳(メタデータ) (2023-11-03T14:17:11Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
深部変分自動エンコーダに基づく時系列異常検出手法(VAE)のための光・反オーバーフィット学習手法(LARA)を提案する。
本研究の目的は,1) 再学習過程を凸問題として定式化し, 過度に収束できること,2) 履歴データを保存せずに活用するルミネートブロックを設計すること,3) 潜在ベクトルと再構成データの微調整を行うと, 線形形成が基底真実と微調整されたブロックとの誤りを最小に調整できることを数学的に証明することである。
論文 参考訳(メタデータ) (2023-10-09T12:36:16Z) - Towards Flexible Time-to-event Modeling: Optimizing Neural Networks via
Rank Regression [17.684526928033065]
我々はDART(Time-to-event Prediction)のためのDeep AFT Rank-regressionモデルを導入する。
このモデルは、表現学習において効率的で信頼性の高いゲハンのランク統計に基づく客観的関数を用いる。
提案手法は, 生存時間分布に分布仮定を課さない半パラメトリックなAFTモデリング手法である。
論文 参考訳(メタデータ) (2023-07-16T13:58:28Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Respecting Time Series Properties Makes Deep Time Series Forecasting
Perfect [3.830797055092574]
時系列予測モデルにおいて、時間的特徴をどのように扱うかが重要な問題である。
本稿では,3つの有意だが未確立の深層時系列予測機構を厳密に分析する。
上記の分析に基づいて,新しい時系列予測ネットワーク,すなわちRTNetを提案する。
論文 参考訳(メタデータ) (2022-07-22T08:34:31Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Monte Carlo EM for Deep Time Series Anomaly Detection [6.312089019297173]
時系列データは、しばしば外れ値や他の種類の異常によって破壊される。
異常検出と予測への最近のアプローチは、トレーニングデータの異常の割合が無視できるほど小さいと仮定している。
本稿では,既存の時系列モデルを拡張して,トレーニングデータの異常を明示的に考慮する手法を提案する。
論文 参考訳(メタデータ) (2021-12-29T07:52:36Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。