論文の概要: Fault-tolerant embedding of quantum circuits on hardware architectures via swap gates
- arxiv url: http://arxiv.org/abs/2406.17044v1
- Date: Mon, 24 Jun 2024 18:05:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 18:40:56.032102
- Title: Fault-tolerant embedding of quantum circuits on hardware architectures via swap gates
- Title(参考訳): スワップゲートによる量子回路のハードウェアアーキテクチャへのフォールトトレラント埋め込み
- Authors: Shao-Hen Chiew, Ezequiel Ignacio Rodriguez Chiacchio, Vishal Sharma, Jing Hao Chai, Hui Khoon Ng,
- Abstract要約: 短期量子コンピューティングデバイスでは、量子ビット間の接続はアーキテクチャ上の制約によって制限される。
本稿では,接続性に制約のある物理ハードウェアに抽象回路を埋め込むのに必要なスワップスキームを設計する戦略を提案する。
- 参考スコア(独自算出の注目度): 1.3073886556026282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In near-term quantum computing devices, connectivity between qubits remain limited by architectural constraints. A computational circuit with given connectivity requirements necessary for multi-qubit gates have to be embedded within physical hardware with fixed connectivity. Long-distance gates have to be done by first routing the relevant qubits together. The simplest routing strategy involves the use of swap gates to swap the information carried by two unconnected qubits to connected ones. Ideal swap gates just permute the qubits; real swap gates, however, have the added possibilities of causing simultaneous errors on the qubits involved and spreading errors across the circuit. A general swap scheme thus changes the error-propagation properties of a circuit, including those necessary for fault-tolerant functioning of a circuit. Here, we present a simple strategy to design the swap scheme needed to embed an abstract circuit onto a physical hardware with constrained connectivity, in a manner that preserves the fault-tolerant properties of the abstract circuit. The embedded circuit will, of course, be noisier, compared to a native implementation of the abstract circuit, but we show in the examples of embedding surface codes on heavy-hexagonal and hexagonal lattices that the deterioration is not severe. This then offers a straightforward solution to implementing circuits with fault-tolerance properties on current hardware.
- Abstract(参考訳): 短期量子コンピューティングデバイスでは、量子ビット間の接続はアーキテクチャ上の制約によって制限される。
マルチキュービットゲートに必要な接続要求のある計算回路は、物理ハードウェアに固定接続を組み込まなければならない。
長距離ゲートは、まず関連するキュービットをまとめてルーティングする必要がある。
最も単純なルーティング戦略は、スワップゲートを使用して、2つの接続されていないキュービットが持つ情報を接続されたキュービットに置き換えることである。
しかし、理想的なスワップゲートはキュービットを透過するだけであり、実際のスワップゲートは、関連するキュービットに同時エラーを引き起こし、回路全体にエラーを拡散させる可能性がある。
一般的なスワップ方式は、回路のフォールトトレラント機能に必要なものを含む回路のエラー伝搬特性を変化させる。
本稿では,抽象回路のフォールトトレラント性を保ちながら,物理的ハードウェアに制約のある接続性を持たせるために必要なスワップスキームを設計するための簡単な方法を提案する。
埋め込み回路は、もちろん抽象回路のネイティブ実装と比較してノイズが大きいが、重六角形格子や六角形格子に埋め込まれた曲面符号の例として、劣化は深刻ではないことを示す。
これにより、現在のハードウェアにフォールトトレランス特性を持つ回路を実装するための簡単なソリューションが提供される。
関連論文リスト
- Efficient fault-tolerant code switching via one-way transversal CNOT gates [0.0]
スイッチングゲートのみを用いることで、FT回路設計の制約を尊重するコードスキームを提案する。
我々は、既存の量子プロセッサの動作に適した低距離カラーコードへのスキームの適用を解析する。
論理的補助量子ビットが十分に確実に準備できることを前提として、このスキームを大規模な並列化でどのように実装できるかを論じる。
論文 参考訳(メタデータ) (2024-09-20T12:54:47Z) - Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning [1.1891349121931318]
本稿では,コンパクトかつハードウェア対応のフォールトトレラント量子回路を自動検出する強化学習を提案する。
耐故障性論理状態作成のタスクにおいて、RLは最大15個の物理量子ビットのハードウェア制約を伴わない結果よりも、ゲートと補助量子ビットの少ない回路を発見する。
論文 参考訳(メタデータ) (2024-02-27T18:55:13Z) - Comparative study of quantum error correction strategies for the
heavy-hexagonal lattice [44.99833362998488]
トポロジカル量子誤差補正は、量子コンピュータのスケーリングロードマップにおけるマイルストーンである。
四角い格子面のコードは、この問題に対処するための作業場となっている。
しかし、一部のプラットフォームではゲートエラーを最小限に抑えるために接続性はさらに低く保たれている。
論文 参考訳(メタデータ) (2024-02-03T15:28:27Z) - Circuit Cutting with Non-Maximally Entangled States [59.11160990637615]
分散量子コンピューティングは、複数のデバイスの計算能力を組み合わせて、個々のデバイスの限界を克服する。
回路切断技術は、古典的な通信を通じて量子計算の分配を可能にする。
量子テレポーテーション(quantum teleportation)は、指数的なショットの増加を伴わない量子計算の分布を可能にする。
非最大エンタングル量子ビット対を利用する新しい回路切断法を提案する。
論文 参考訳(メタデータ) (2023-06-21T08:03:34Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
超伝導量子プロセッサを設計する。
本稿では,2量子共振共振ゲートを備えたユニバーサルゲートセットを提案する。
ノイズの多い量子ハードウェアのための$rm SU(16)$ゲートの合成を数値的に実証する。
論文 参考訳(メタデータ) (2022-12-08T18:59:53Z) - Efficient Quantum Circuit Design with a Standard Cell Approach, with an Application to Neutral Atom Quantum Computers [45.66259474547513]
従来の回路設計から借用した標準セルアプローチを用いて量子回路を設計する。
本稿では,自動ルーティング方式と比較してレイアウト対応ルータが大幅に高速で,より浅い3D回路を実現することを示す。
論文 参考訳(メタデータ) (2022-06-10T10:54:46Z) - Circuit connectivity boosts by quantum-classical-quantum interfaces [0.4194295877935867]
高接続回路は、現在の量子ハードウェアの主要な障害である。
本稿では,スワップゲートはしごを使わずにそのような回路をシミュレートする古典量子ハイブリッドアルゴリズムを提案する。
より遠い2つの量子ビットに対するベル状態回路の有効性を数値的に示す。
論文 参考訳(メタデータ) (2022-03-09T19:00:02Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
2量子ゲートは量子コンピューティングの重要な構成要素である。
しかし、量子ビット間の不要な相互作用(いわゆる寄生ゲート)は、量子アプリケーションの性能を低下させる。
寄生性2ビットゲート誤差を軽減するための2つのソフトウェア手法を提案する。
論文 参考訳(メタデータ) (2021-11-08T17:37:27Z) - Quantum crosstalk analysis for simultaneous gate operations on
superconducting qubits [12.776712619117092]
量子クロストークがキュービットアーキテクチャにおける同時ゲート操作に与える影響について検討する。
マイクロ波駆動の単一量子ゲートでは、量子ビット結合によるドレッシングが非無視のクロスドライブエラーを引き起こす可能性がある。
論文 参考訳(メタデータ) (2021-10-25T01:21:04Z) - Using Reinforcement Learning to Perform Qubit Routing in Quantum
Compilers [0.0]
深層Q-ラーニングパラダイムの修正版を用いたキュービットルーティング手法を提案する。
このシステムは、現在利用可能な最も先進的な量子コンパイラの2つから、キュービットルーティング手順を上回ります。
論文 参考訳(メタデータ) (2020-07-31T10:57:24Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
本稿では、非相互デバイスと、基底空間が2倍縮退し、基底状態がGottesman-Kitaev-Preskill(GKP)符号の近似符号であるジョセフソン接合からなる回路設計について述べる。
この回路は、電荷やフラックスノイズなどの超伝導回路の一般的なノイズチャネルに対して自然に保護されており、受動的量子誤差補正に使用できることを示唆している。
論文 参考訳(メタデータ) (2020-02-18T16:45:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。