論文の概要: Achieving Fairness Across Local and Global Models in Federated Learning
- arxiv url: http://arxiv.org/abs/2406.17102v1
- Date: Mon, 24 Jun 2024 19:42:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 18:31:07.432871
- Title: Achieving Fairness Across Local and Global Models in Federated Learning
- Title(参考訳): フェデレーションラーニングにおける地域・グローバルモデル間の公正性獲得
- Authors: Disha Makhija, Xing Han, Joydeep Ghosh, Yejin Kim,
- Abstract要約: 本研究は,フェデレート学習環境における局所的およびグローバル的公正性を高めるために設計された,新しいアプローチであるtextttEquiFLを紹介する。
textttEquiFLは、フェアネスという用語を局所最適化の目的に取り入れ、局所的なパフォーマンスとフェアネスを効果的にバランスさせる。
textttEquiFLは、各クライアントにおいて、精度と公平性のバランスが良くなるだけでなく、グローバル公正性も達成できることを示す。
- 参考スコア(独自算出の注目度): 9.902848777262918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving fairness across diverse clients in Federated Learning (FL) remains a significant challenge due to the heterogeneity of the data and the inaccessibility of sensitive attributes from clients' private datasets. This study addresses this issue by introducing \texttt{EquiFL}, a novel approach designed to enhance both local and global fairness in federated learning environments. \texttt{EquiFL} incorporates a fairness term into the local optimization objective, effectively balancing local performance and fairness. The proposed coordination mechanism also prevents bias from propagating across clients during the collaboration phase. Through extensive experiments across multiple benchmarks, we demonstrate that \texttt{EquiFL} not only strikes a better balance between accuracy and fairness locally at each client but also achieves global fairness. The results also indicate that \texttt{EquiFL} ensures uniform performance distribution among clients, thus contributing to performance fairness. Furthermore, we showcase the benefits of \texttt{EquiFL} in a real-world distributed dataset from a healthcare application, specifically in predicting the effects of treatments on patients across various hospital locations.
- Abstract(参考訳): フェデレートラーニング(FL)における多様なクライアント間の公正性を達成することは、データの均一性と、クライアントのプライベートデータセットから機密属性がアクセスできないため、依然として大きな課題である。
本研究は,フェデレート学習環境における局所的・グローバル的公正性の向上を目的とした,新しいアプローチである「texttt{EquiFL}」を導入することでこの問題に対処する。
\texttt{EquiFL} は局所最適化目標にフェアネス項を組み込み、局所的な性能とフェアネスを効果的にバランスさせる。
提案した調整機構は、協調フェーズ中にクライアント間でバイアスが伝播するのを防ぐ。
複数のベンチマークにまたがる広範囲な実験を通して、 \texttt{EquiFL} は各クライアントの精度と公平性のバランスを良くするだけでなく、グローバル公正性も達成できることを示した。
その結果, クライアント間の均一な性能分布が保証され, 性能の公平性に寄与することが示唆された。
さらに,医療アプリケーションからリアルタイムに分散したデータセットに \texttt{EquiFL} の利点を示す。
関連論文リスト
- WassFFed: Wasserstein Fair Federated Learning [31.135784690264888]
Federated Learning (FL)は、ユーザのデータをクライアント間で共有できないシナリオに対処するためのトレーニングアプローチを採用している。
本稿では,Wasserstein Fair Federated Learningフレームワーク,すなわちWassFFedを提案する。
論文 参考訳(メタデータ) (2024-11-11T11:26:22Z) - Locally Estimated Global Perturbations are Better than Local Perturbations for Federated Sharpness-aware Minimization [81.32266996009575]
フェデレートラーニング(FL)では、クライアント間の複数ステップの更新とデータの均一性が、よりシャープなミニマによるロスランドスケープにつながることが多い。
クライアント側におけるグローバルな摂動方向を局所的に推定する新しいアルゴリズムであるFedLESAMを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:46:21Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FedCRL: Personalized Federated Learning with Contrastive Shared Representations for Label Heterogeneity in Non-IID Data [13.146806294562474]
本稿では,FedCoSR(Federated Contrastive Shareable Representations)という,個人化学習アルゴリズムを提案する。
ローカルモデルの浅い層と典型的なローカル表現のパラメータはどちらもサーバの共有可能な情報である。
クライアント間でのラベル分布スキューによる性能の低下に対処するため、局所表現とグローバル表現の対比学習を採用する。
論文 参考訳(メタデータ) (2024-04-27T14:05:18Z) - FedLoGe: Joint Local and Generic Federated Learning under Long-tailed
Data [46.29190753993415]
Federated Long-Tailed Learning (Fed-LT)は、分散化されたローカルクライアントから収集されたデータが、グローバルに普及しているロングテール分布を示すパラダイムである。
本稿では、Fed-LT(FedLoGe)におけるFederated Local and Generic Model Training(FedLoGe)というアプローチを紹介し、ローカルモデルとジェネリックモデルの両方のパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-01-17T05:04:33Z) - GLOCALFAIR: Jointly Improving Global and Local Group Fairness in Federated Learning [8.033939709734451]
フェデレートラーニング(FL)は、データプライバシを犠牲にすることなく、クライアント間で共有モデルを共同で学習するための、将来的なソリューションとして登場した。
FLは、データの不均一性やパーティーの選択など、固有のFL特性のために、特定の人口集団に対してバイアスを受ける傾向にある。
クライアントのプライベートデータセットに関する詳細な統計を必要とせずに,グローバルおよびローカルグループフェアネスを改善するクライアントサーバのコードサインであるGFAIRを提案する。
論文 参考訳(メタデータ) (2024-01-07T18:10:14Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - FLIS: Clustered Federated Learning via Inference Similarity for Non-IID
Data Distribution [7.924081556869144]
本稿では,クライアント集団をクラスタにグループ化し,共同でトレーニング可能なデータ配信を行う新しいアルゴリズムFLISを提案する。
CIFAR-100/10, SVHN, FMNISTデータセット上の最先端ベンチマークに対するFLISの利点を示す実験結果を示す。
論文 参考訳(メタデータ) (2022-08-20T22:10:48Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
フェデレートラーニング(FL)は、複数のクライアントがプライベートデータを共有せずに、高性能なグローバルモデルを集合的にトレーニングすることを可能にする。
局所的ドリフトデカップリングと補正(FedDC)を用いた新しいフェデレーション学習アルゴリズムを提案する。
私たちのFedDCでは、ローカルモデルパラメータとグローバルモデルパラメータのギャップを追跡するために、各クライアントが補助的なローカルドリフト変数を使用するような、ローカルトレーニングフェーズにおける軽量な修正のみを導入しています。
実験結果と解析結果から,FedDCは様々な画像分類タスクにおいて,収差の迅速化と性能の向上を図っている。
論文 参考訳(メタデータ) (2022-03-22T14:06:26Z) - Fair and Consistent Federated Learning [48.19977689926562]
フェデレートラーニング(FL)は、分散データソースから学習する能力に対する関心が高まっている。
本稿では,異なるローカルクライアント間で性能整合性とアルゴリズムフェアネスを協調的に検討するFLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-19T01:56:08Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。