論文の概要: WassFFed: Wasserstein Fair Federated Learning
- arxiv url: http://arxiv.org/abs/2411.06881v1
- Date: Mon, 11 Nov 2024 11:26:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:12:03.057116
- Title: WassFFed: Wasserstein Fair Federated Learning
- Title(参考訳): WassFFed: Wasserstein Fair Federated Learning
- Authors: Zhongxuan Han, Li Zhang, Chaochao Chen, Xiaolin Zheng, Fei Zheng, Yuyuan Li, Jianwei Yin,
- Abstract要約: Federated Learning (FL)は、ユーザのデータをクライアント間で共有できないシナリオに対処するためのトレーニングアプローチを採用している。
本稿では,Wasserstein Fair Federated Learningフレームワーク,すなわちWassFFedを提案する。
- 参考スコア(独自算出の注目度): 31.135784690264888
- License:
- Abstract: Federated Learning (FL) employs a training approach to address scenarios where users' data cannot be shared across clients. Achieving fairness in FL is imperative since training data in FL is inherently geographically distributed among diverse user groups. Existing research on fairness predominantly assumes access to the entire training data, making direct transfer to FL challenging. However, the limited existing research on fairness in FL does not effectively address two key challenges, i.e., (CH1) Current methods fail to deal with the inconsistency between fair optimization results obtained with surrogate functions and fair classification results. (CH2) Directly aggregating local fair models does not always yield a globally fair model due to non Identical and Independent data Distributions (non-IID) among clients. To address these challenges, we propose a Wasserstein Fair Federated Learning framework, namely WassFFed. To tackle CH1, we ensure that the outputs of local models, rather than the loss calculated with surrogate functions or classification results with a threshold, remain independent of various user groups. To resolve CH2, we employ a Wasserstein barycenter calculation of all local models' outputs for each user group, bringing local model outputs closer to the global output distribution to ensure consistency between the global model and local models. We conduct extensive experiments on three real-world datasets, demonstrating that WassFFed outperforms existing approaches in striking a balance between accuracy and fairness.
- Abstract(参考訳): Federated Learning (FL)は、ユーザのデータをクライアント間で共有できないシナリオに対処するためのトレーニングアプローチを採用している。
FLのトレーニングデータは、本質的に地理的に多様なユーザグループに分散されているため、FLの公平性を達成することが不可欠である。
既存の公正性に関する研究は、主にトレーニングデータ全体へのアクセスを前提としており、FLへの直接転送は困難である。
しかし、FLにおける公正性に関する限定的な研究は、2つの重要な課題、すなわち (CH1) 現在の手法では、代理関数で得られる公正な最適化結果と公平な分類結果との矛盾に対処できない。
(CH2)
ローカルフェアモデルを直接集約することは、クライアント間での非独立データ分散(非IID)のため、必ずしもグローバルフェアモデルを生成するとは限らない。
これらの課題に対処するため、我々はWasserstein Fair Federated Learningフレームワーク、すなわちWassFFedを提案する。
CH1に対処するために、局所モデルの出力は、サロゲート関数やしきい値の分類結果で計算された損失ではなく、様々なユーザグループに依存していることを保証します。
CH2 を解決するため,各ユーザ群毎の局所モデル出力をWasserstein Barycenter 計算し,大域モデルと局所モデルとの整合性を確保するために,局所モデル出力を大域出力分布に近づける。
実世界の3つのデータセットに対する広範な実験を行い、WassFFedが既存のアプローチより優れていることを示す。
関連論文リスト
- Achieving Fairness Across Local and Global Models in Federated Learning [9.902848777262918]
本研究は,フェデレート学習環境における局所的およびグローバル的公正性を高めるために設計された,新しいアプローチであるtextttEquiFLを紹介する。
textttEquiFLは、フェアネスという用語を局所最適化の目的に取り入れ、局所的なパフォーマンスとフェアネスを効果的にバランスさせる。
textttEquiFLは、各クライアントにおいて、精度と公平性のバランスが良くなるだけでなく、グローバル公正性も達成できることを示す。
論文 参考訳(メタデータ) (2024-06-24T19:42:16Z) - GLOCALFAIR: Jointly Improving Global and Local Group Fairness in Federated Learning [8.033939709734451]
フェデレートラーニング(FL)は、データプライバシを犠牲にすることなく、クライアント間で共有モデルを共同で学習するための、将来的なソリューションとして登場した。
FLは、データの不均一性やパーティーの選択など、固有のFL特性のために、特定の人口集団に対してバイアスを受ける傾向にある。
クライアントのプライベートデータセットに関する詳細な統計を必要とせずに,グローバルおよびローカルグループフェアネスを改善するクライアントサーバのコードサインであるGFAIRを提案する。
論文 参考訳(メタデータ) (2024-01-07T18:10:14Z) - Multi-dimensional Fair Federated Learning [25.07463977553212]
フェデレートラーニング(FL)は、分散データからモデルをトレーニングするための、有望な協調的でセキュアなパラダイムとして登場した。
群フェアネスとクライアントフェアネスは、FLにとって重要である2次元のフェアネスである。
グループフェアネスとクライアントフェアネスを同時に達成するために,mFairFLと呼ばれる手法を提案する。
論文 参考訳(メタデータ) (2023-12-09T11:37:30Z) - Mitigating Group Bias in Federated Learning: Beyond Local Fairness [0.6882042556551609]
本研究では,グローバルモデルフェアネスと局所モデルフェアネスの関係について検討する。
本稿では, ペナル化された経験的損失を直接最小化する, グローバルフェアトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-17T03:28:19Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
フェデレートラーニングは、サーバのオーケストレーションの下で、クライアント間で分散されたデータの予測モデルをトレーニングすることを目的としている。
本稿では,クライアント間で不変な因果的特徴を学習するフェデレーション学習のためのゲーム理論フレームワークFL GAMESを提案する。
論文 参考訳(メタデータ) (2022-10-31T22:59:03Z) - E2FL: Equal and Equitable Federated Learning [26.5268278194427]
フェデレートラーニング(FL)は、データ所有者がプライベートデータを共有せずに、共有グローバルモデルをトレーニングすることを可能にする。
平等かつ平等なフェデレーション学習(E2FL)を、公平なフェデレーション学習モデルとして、エクイティと平等という2つの主要なフェアネス特性を同時に保持することにより、公正なフェデレーション学習モデルを作成する。
実世界の異なるFLアプリケーションにおいて、E2FLの効率性と公正性を検証し、E2FLが既存のベースラインよりも高い効率、異なるグループの公平性、公平性を示す。
論文 参考訳(メタデータ) (2022-05-20T22:37:33Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
フェデレートラーニング(FL)は、複数のクライアントがプライベートデータを共有せずに、高性能なグローバルモデルを集合的にトレーニングすることを可能にする。
局所的ドリフトデカップリングと補正(FedDC)を用いた新しいフェデレーション学習アルゴリズムを提案する。
私たちのFedDCでは、ローカルモデルパラメータとグローバルモデルパラメータのギャップを追跡するために、各クライアントが補助的なローカルドリフト変数を使用するような、ローカルトレーニングフェーズにおける軽量な修正のみを導入しています。
実験結果と解析結果から,FedDCは様々な画像分類タスクにおいて,収差の迅速化と性能の向上を図っている。
論文 参考訳(メタデータ) (2022-03-22T14:06:26Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。