論文の概要: LoGoFair: Post-Processing for Local and Global Fairness in Federated Learning
- arxiv url: http://arxiv.org/abs/2503.17231v1
- Date: Fri, 21 Mar 2025 15:33:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:55:20.465207
- Title: LoGoFair: Post-Processing for Local and Global Fairness in Federated Learning
- Title(参考訳): LoGoFair: フェデレーションラーニングにおけるローカルおよびグローバルフェアネスのポストプロシージャー
- Authors: Li Zhang, Chaochao Chen, Zhongxuan Han, Qiyong Zhong, Xiaolin Zheng,
- Abstract要約: 本稿では,FLコンテキストにおける局所性とグローバルフェアネス,すなわちLoGoFairを実現するための新しい後処理フレームワークを提案する。
3つの実世界のデータセットの実験結果は、提案したLoGoFairフレームワークの有効性をさらに示している。
- 参考スコア(独自算出の注目度): 20.12470856622916
- License:
- Abstract: Federated learning (FL) has garnered considerable interest for its capability to learn from decentralized data sources. Given the increasing application of FL in decision-making scenarios, addressing fairness issues across different sensitive groups (e.g., female, male) in FL is crucial. Current research often focuses on facilitating fairness at each client's data (local fairness) or within the entire dataset across all clients (global fairness). However, existing approaches that focus exclusively on either local or global fairness fail to address two key challenges: (\textbf{CH1}) Under statistical heterogeneity, global fairness does not imply local fairness, and vice versa. (\textbf{CH2}) Achieving fairness under model-agnostic setting. To tackle the aforementioned challenges, this paper proposes a novel post-processing framework for achieving both Local and Global Fairness in the FL context, namely LoGoFair. To address CH1, LoGoFair endeavors to seek the Bayes optimal classifier under local and global fairness constraints, which strikes the optimal accuracy-fairness balance in the probabilistic sense. To address CH2, LoGoFair employs a model-agnostic federated post-processing procedure that enables clients to collaboratively optimize global fairness while ensuring local fairness, thereby achieving the optimal fair classifier within FL. Experimental results on three real-world datasets further illustrate the effectiveness of the proposed LoGoFair framework.
- Abstract(参考訳): フェデレートラーニング(FL)は、分散データソースから学ぶ能力に対して、かなりの関心を集めている。
意思決定シナリオにおけるFLの適用が増加していることを踏まえると、FLにおけるさまざまなセンシティブなグループ(例えば、女性、男性)の公平性の問題に対処することが重要である。
現在の研究は、各クライアントのデータ(ローカルフェアネス)や、全クライアントにわたるデータセット全体(グローバルフェアネス)におけるフェアネスの促進に重点を置いていることが多い。
しかしながら、局所的または大域的公正性にのみ焦点をあてる既存のアプローチは、2つの主要な課題に対処できない: (\textbf{CH1}) 統計的不均一性の下では、大域的公正性は局所的公正性を含まない。
(\textbf{CH2})
モデルに依存しない設定で公正を達成する。
本稿では,これらの課題に対処するため,FLコンテキストにおける局所的・グローバルフェアネス,すなわちLoGoFairを実現するための新しい後処理フレームワークを提案する。
CH1に対処するために、LoGoFairは局所的および大域的公正性制約の下でベイズ最適分類器を求める。
CH2に対処するため、LoGoFairはモデルに依存しないフェデレーション後処理手順を採用しており、クライアントは局所フェアネスを確保しながらグローバルフェアネスを協調的に最適化し、FL内で最適なフェアクラシファイアを実現することができる。
3つの実世界のデータセットの実験結果は、提案したLoGoFairフレームワークの有効性をさらに示している。
関連論文リスト
- WassFFed: Wasserstein Fair Federated Learning [31.135784690264888]
Federated Learning (FL)は、ユーザのデータをクライアント間で共有できないシナリオに対処するためのトレーニングアプローチを採用している。
本稿では,Wasserstein Fair Federated Learningフレームワーク,すなわちWassFFedを提案する。
論文 参考訳(メタデータ) (2024-11-11T11:26:22Z) - Achieving Fairness Across Local and Global Models in Federated Learning [9.902848777262918]
本研究は,フェデレート学習環境における局所的およびグローバル的公正性を高めるために設計された,新しいアプローチであるtextttEquiFLを紹介する。
textttEquiFLは、フェアネスという用語を局所最適化の目的に取り入れ、局所的なパフォーマンスとフェアネスを効果的にバランスさせる。
textttEquiFLは、各クライアントにおいて、精度と公平性のバランスが良くなるだけでなく、グローバル公正性も達成できることを示す。
論文 参考訳(メタデータ) (2024-06-24T19:42:16Z) - Locally Estimated Global Perturbations are Better than Local Perturbations for Federated Sharpness-aware Minimization [81.32266996009575]
フェデレートラーニング(FL)では、クライアント間の複数ステップの更新とデータの均一性が、よりシャープなミニマによるロスランドスケープにつながることが多い。
クライアント側におけるグローバルな摂動方向を局所的に推定する新しいアルゴリズムであるFedLESAMを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:46:21Z) - Distribution-Free Fair Federated Learning with Small Samples [54.63321245634712]
FedFaiREEは、分散化された環境で分散のないフェアラーニングのために小さなサンプルで開発された後処理アルゴリズムである。
公正性と精度の両面において厳密な理論的保証を提供し,実験結果により,提案手法の堅牢な実証検証を行う。
論文 参考訳(メタデータ) (2024-02-25T17:37:53Z) - GLOCALFAIR: Jointly Improving Global and Local Group Fairness in Federated Learning [8.033939709734451]
フェデレートラーニング(FL)は、データプライバシを犠牲にすることなく、クライアント間で共有モデルを共同で学習するための、将来的なソリューションとして登場した。
FLは、データの不均一性やパーティーの選択など、固有のFL特性のために、特定の人口集団に対してバイアスを受ける傾向にある。
クライアントのプライベートデータセットに関する詳細な統計を必要とせずに,グローバルおよびローカルグループフェアネスを改善するクライアントサーバのコードサインであるGFAIRを提案する。
論文 参考訳(メタデータ) (2024-01-07T18:10:14Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - Demystifying Local and Global Fairness Trade-offs in Federated Learning
Using Partial Information Decomposition [7.918307236588161]
本研究は,フェデレートラーニング(FL)におけるグループフェアネストレードオフに対する情報理論的視点を示す。
FLでは、$textitUnique Disparity$, $textitRedundant Disparity$, $textitMasked Disparity$という、不公平な3つのソースを特定します。
グローバル・フェアネスとローカル・フェアネスのトレードオフに関する根本的な制限を導き、彼らが同意するか、意見が一致しないかを強調します。
論文 参考訳(メタデータ) (2023-07-21T03:41:55Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - FairVFL: A Fair Vertical Federated Learning Framework with Contrastive
Adversarial Learning [102.92349569788028]
本稿では,VFLモデルの公平性を改善するために,FairVFL( Fair vertical federated learning framework)を提案する。
FairVFLの中核となる考え方は、分散化された機能フィールドに基づいたサンプルの統一的で公正な表現を、プライバシ保護の方法で学習することである。
ユーザのプライバシ保護のために,サーバ内の統一表現からプライベート情報を除去する対向学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-07T11:43:32Z) - Proportional Fairness in Federated Learning [27.086313029073683]
PropFairは、フェデレート学習において、比例的に公平な解を見つけるための、新しく簡単に実装できるアルゴリズムである。
PropFairはおよそPFソリューションを見つけることができ、すべてのクライアントの平均的なパフォーマンスと最悪の10%のクライアントのバランスがとれることを実証します。
論文 参考訳(メタデータ) (2022-02-03T16:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。