The Infinite-Dimensional Quantum Entropy: the Unified Entropy Case
- URL: http://arxiv.org/abs/2406.17133v1
- Date: Mon, 24 Jun 2024 20:47:16 GMT
- Title: The Infinite-Dimensional Quantum Entropy: the Unified Entropy Case
- Authors: Roman Gielerak, Joanna Wiśniewska, Marek Sawerwain,
- Abstract summary: The unified quantum entropy notion has been extended to a case of infinite-dimensional systems.
Some of the known (in the finite-dimensional case) basic properties of the introduced unified entropies have been extended to the case study.
- Score: 0.4915744683251149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By a use of the Fredholm determinant theory, the unified quantum entropy notion has been extended to a case of infinite-dimensional systems. Some of the known (in the finite-dimensional case) basic properties of the introduced unified entropies have been extended to the case study. Certain numerical approaches for computing the proposed finite and infinite-dimensional entropies are being outlined as well.
Related papers
- Dilation theorem via Schr\"odingerisation, with applications to the
quantum simulation of differential equations [29.171574903651283]
Nagy's unitary dilation theorem in operator theory asserts the possibility of dilating a contraction into a unitary operator.
In this study, we demonstrate the viability of the recently devised Schr"odingerisation approach.
arXiv Detail & Related papers (2023-09-28T08:55:43Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Renormalized von Neumann entropy with application to entanglement in
genuine infinite dimensional systems [0.0]
Von Neumann quantum entropy is finite and continuous in general, infinite dimensional case.
The renormalized quantum entropy is defined by the explicit use of the Fredholm determinants theory.
Several features of majorization theory are preserved under then introduced renormalization as it is proved in this paper.
arXiv Detail & Related papers (2022-11-10T12:56:07Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Quantum logical entropy: fundamentals and general properties [0.0]
We introduce the quantum logical entropy to study quantum systems.
We prove several properties of this entropy for generic density matrices.
We extend the notion of quantum logical entropy to post-selected systems.
arXiv Detail & Related papers (2021-08-05T16:47:22Z) - Quantum and classical ergotropy from relative entropies [0.0]
The quantum ergotropy quantifies the maximal amount of work that can be extracted from a quantum state without changing its entropy.
A unified approach to treat both quantum as well as classical scenarios is provided by geometric quantum mechanics.
arXiv Detail & Related papers (2021-03-19T15:07:26Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Maximum Geometric Quantum Entropy [0.0]
We propose the Maximum Geometric Quantum Entropy Principle to exploit the notions of Information Dimension and Quantum Entropy.
These allow us to quantify the entropy of fully arbitrary ensembles and select the one that maximizes it.
arXiv Detail & Related papers (2020-08-19T21:43:58Z) - A Topos Theoretic Notion of Entropy [1.827510863075184]
We show how a notion of entropy can be defined within the topos formalism.
We show how this construction unifies Shannon and von Neumann entropy as well as classical and quantum Renyi entropies.
arXiv Detail & Related papers (2020-06-04T21:37:29Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.