論文の概要: A review of unsupervised learning in astronomy
- arxiv url: http://arxiv.org/abs/2406.17316v1
- Date: Tue, 25 Jun 2024 06:57:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 15:21:33.677561
- Title: A review of unsupervised learning in astronomy
- Title(参考訳): 天文学における教師なし学習の展望
- Authors: Sotiria Fotopoulou,
- Abstract要約: このレビューでは、一般的な教師なし学習手法を要約し、天文学における過去、現在、そして将来の用途について概観する。
教師なし学習は、知識を抽出できる方法でデータセットの情報内容を整理することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This review summarizes popular unsupervised learning methods, and gives an overview of their past, current, and future uses in astronomy. Unsupervised learning aims to organise the information content of a dataset, in such a way that knowledge can be extracted. Traditionally this has been achieved through dimensionality reduction techniques that aid the ranking of a dataset, for example through principal component analysis or by using auto-encoders, or simpler visualisation of a high dimensional space, for example through the use of a self organising map. Other desirable properties of unsupervised learning include the identification of clusters, i.e. groups of similar objects, which has traditionally been achieved by the k-means algorithm and more recently through density-based clustering such as HDBSCAN. More recently, complex frameworks have emerged, that chain together dimensionality reduction and clustering methods. However, no dataset is fully unknown. Thus, nowadays a lot of research has been directed towards self-supervised and semi-supervised methods that stand to gain from both supervised and unsupervised learning.
- Abstract(参考訳): このレビューでは、一般的な教師なし学習手法を要約し、天文学における過去、現在、そして将来の用途について概観する。
教師なし学習は、知識を抽出できる方法でデータセットの情報内容を整理することを目的としている。
伝統的にこれは、例えば主成分分析やオートエンコーダによるデータセットのランク付け、例えば自己組織化マップによる高次元空間のより単純な可視化などによって達成されてきた。
他の教師なし学習の望ましい性質としては、クラスタの同定、すなわち類似したオブジェクトのグループの同定があり、これは伝統的にk平均アルゴリズムによって達成され、最近ではHDBSCANのような密度ベースのクラスタリングによって実現されている。
最近では、次元の縮小とクラスタリングメソッドをチェーンする複雑なフレームワークが登場している。
しかし、完全なデータセットは知られていない。
このように、今日では、教師なし学習と教師なし学習の両方から得られるであろう自己監督的および半監督的手法に多くの研究が向けられている。
関連論文リスト
- Granularity Matters in Long-Tail Learning [62.30734737735273]
より粒度の細かいデータセットは、データの不均衡の影響を受けにくい傾向があります。
既存のクラスと視覚的に類似したオープンセット補助クラスを導入し、頭と尾の両方の表現学習を強化することを目的とした。
補助授業の圧倒的な存在がトレーニングを混乱させるのを防ぐために,近隣のサイレンシング障害を導入する。
論文 参考訳(メタデータ) (2024-10-21T13:06:21Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Supervised Manifold Learning via Random Forest Geometry-Preserving
Proximities [0.0]
クラス条件付き多様体学習手法の弱点を定量的かつ視覚的に示す。
本稿では,ランダムな森の近さをデータジオメトリ保存した変種を用いて,教師付き次元減少のためのカーネルの代替選択を提案する。
論文 参考訳(メタデータ) (2023-07-03T14:55:11Z) - Semi-supervised learning made simple with self-supervised clustering [65.98152950607707]
自己教師付き学習モデルは、人間のアノテーションを必要とせずにリッチな視覚表現を学習することが示されている。
本稿では,クラスタリングに基づく自己教師付き手法を半教師付き学習者へと変換する,概念的に単純だが経験的に強力な手法を提案する。
論文 参考訳(メタデータ) (2023-06-13T01:09:18Z) - Spatiotemporal Self-supervised Learning for Point Clouds in the Wild [65.56679416475943]
空間領域と時間領域の両方で正のペアを利用するSSL戦略を導入する。
2つの大規模LiDARデータセット上で,自己教師型トレーニングによって実施した広範囲な実験を通じて,このアプローチのメリットを実証する。
論文 参考訳(メタデータ) (2023-03-28T18:06:22Z) - DC-BENCH: Dataset Condensation Benchmark [79.18718490863908]
この研究は、データセットの凝縮に関する最初の大規模標準ベンチマークを提供する。
それは、凝縮法の生成可能性と有効性を包括的に反映する一連の評価から成り立っている。
ベンチマークライブラリは、将来の研究とアプリケーションを容易にするためにオープンソース化されている。
論文 参考訳(メタデータ) (2022-07-20T03:54:05Z) - Seeking the Truth Beyond the Data. An Unsupervised Machine Learning
Approach [0.0]
クラスタリングは、ラベルのない要素/オブジェクトがグループ化される、教師なしの機械学習方法論である。
この記事では、最も広く使われているクラスタリング手法について詳しく説明する。
3つのデータセットに基づいて、これらのアルゴリズムのクラスタリング効率の比較を強調している。
論文 参考訳(メタデータ) (2022-07-14T14:22:36Z) - Hyperspherical Consistency Regularization [45.00073340936437]
我々は,自己教師あり学習と教師あり学習の関係について検討し,自己教師あり学習がデータ効率のよい深層学習にどのように役立つかを検討する。
超球面整合正則化(HCR)を提案し,特徴依存情報を用いた分類器の正規化を行い,ラベルからのバイアスを回避する。
論文 参考訳(メタデータ) (2022-06-02T02:41:13Z) - Understanding the World Through Action [91.3755431537592]
ラベルのないデータを利用するための汎用的で原則的で強力なフレームワークは、強化学習から導き出すことができると私は主張する。
このような手順が、下流の潜在的なタスクとどのように密接に一致しているかについて論じます。
論文 参考訳(メタデータ) (2021-10-24T22:33:52Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
本稿では,自己教師型学習のためのクラスタリングに基づくプレテキストタスクを用いて,土地被覆マッピングの新しい手法を提案する。
社会的に関係のある2つのアプリケーションに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-08-16T19:35:43Z) - EXPLAIN-IT: Towards Explainable AI for Unsupervised Network Traffic
Analysis [7.447122949368314]
ラベルのないデータを扱う手法であるEXPLAIN-ITを導入し、意味のあるクラスタを作成し、エンドユーザのクラスタリング結果の説明を提案する。
暗号化されたトラフィックシナリオ下でのYouTubeビデオ品質分類の問題に対してEXPLAIN-ITを適用し,有望な結果を示す。
論文 参考訳(メタデータ) (2020-03-03T17:54:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。