論文の概要: A Critical Analysis of the Theoretical Framework of the Extreme Learning Machine
- arxiv url: http://arxiv.org/abs/2406.17427v1
- Date: Tue, 25 Jun 2024 10:06:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 14:51:57.507886
- Title: A Critical Analysis of the Theoretical Framework of the Extreme Learning Machine
- Title(参考訳): 極端学習機械の理論的枠組みの批判的分析
- Authors: Irina Perfilievaa, Nicolas Madrid, Manuel Ojeda-Aciego, Piotr Artiemjew, Agnieszka Niemczynowicz,
- Abstract要約: ELM学習アルゴリズムに反例を与える2つの主要な文とデータセットの証明を論じる。
我々は、いくつかの理論的ケースにおいて、EMMの効率を正当化する基礎の代替的なステートメントを提供する。
- 参考スコア(独自算出の注目度): 1.9503475832401784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the number of successful applications of the Extreme Learning Machine (ELM), we show that its underlying foundational principles do not have a rigorous mathematical justification. Specifically, we refute the proofs of two main statements, and we also create a dataset that provides a counterexample to the ELM learning algorithm and explain its design, which leads to many such counterexamples. Finally, we provide alternative statements of the foundations, which justify the efficiency of ELM in some theoretical cases.
- Abstract(参考訳): ELM(Extreme Learning Machine)の応用が成功したにもかかわらず、基礎となる原理は厳密な数学的正当性を持っていないことを示す。
具体的には、2つの主要なステートメントの証明を論じるとともに、EMM学習アルゴリズムに反例を与えるデータセットを作成し、その設計を説明し、多くの反例をもたらす。
最後に、いくつかの理論的ケースにおいて、EMMの効率を正当化する基礎の代替的なステートメントを提供する。
関連論文リスト
- Hypothesis-Driven Theory-of-Mind Reasoning for Large Language Models [76.6028674686018]
エージェントの精神状態を追跡するための推論時間推論アルゴリズムである思考トレースを導入する。
提案アルゴリズムは,ベイズ理論をモデルとした。
本研究は,様々なベンチマークにおける思考トレーシングを評価し,大幅な性能向上を実証した。
論文 参考訳(メタデータ) (2025-02-17T15:08:50Z) - One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs [57.48325300739872]
証明生成のための数学的大規模言語モデルを活用することは、LLM研究の基本的なトピックである。
現状のLCMが証明できる能力は、学習中に関連する証明プロセスに遭遇したかどうかに大きく依存していると論じる。
人間の数学教育で一般的に用いられる「反例による防御」の教育的手法に触発されて,我々の研究は,反例を通して数学的推論と証明を行うLLMの能力を高めることを目的としている。
論文 参考訳(メタデータ) (2025-02-12T02:01:10Z) - JustLogic: A Comprehensive Benchmark for Evaluating Deductive Reasoning in Large Language Models [51.99046112135311]
我々は、大言語モデルの厳密な評価のための合成推論ベンチマークであるJustLogicを紹介する。
JustLogicは非常に複雑で、多様な言語パターン、語彙、引数構造を生成することができる。
実験の結果,ほとんどのSOTA (State-of-the-art (SOTA) LLMは人体平均よりも著しく低下していることがわかった。
論文 参考訳(メタデータ) (2025-01-24T15:49:10Z) - Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation [71.32761934724867]
この研究は、記号的突然変異を通じて形式的な定理を構成するデータ合成のフレームワークであるAlchemyを提案する。
マドリブにおける各候補定理について、書き直しや適用に使用できるすべてのイベーシブルな定理を同定する。
その結果、マドリブの定理の数は110kから6Mへと桁違いに増加する。
論文 参考訳(メタデータ) (2024-10-21T08:04:21Z) - The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
トークン化は、NLPパイプラインにおける重要なステップである。
NLPにおける標準表現法としての重要性は認識されているが、トークン化の理論的基盤はまだ完全には理解されていない。
本稿では,トークン化モデルの表現と解析のための統一的な形式的枠組みを提案することによって,この理論的ギャップに対処することに貢献している。
論文 参考訳(メタデータ) (2024-07-16T11:12:28Z) - ConceptMath: A Bilingual Concept-wise Benchmark for Measuring
Mathematical Reasoning of Large Language Models [67.32868432113587]
本稿では,Large Language Models (LLMs) の概念的数学的推論を評価するための詳細なベンチマークであるConceptMathを紹介する。
一般的な数学的推論を平均精度で評価する従来のベンチマークとは異なり、ConceptMathは数学の問題を数学的概念の階層の下に体系的に整理する。
論文 参考訳(メタデータ) (2024-02-22T16:06:49Z) - Towards the Theory of Unsupervised Federated Learning: Non-asymptotic Analysis of Federated EM Algorithms [13.857921574409362]
混合モデルの教師なし学習のために設計されたフェデレート勾配EMアルゴリズム(FedGrEM)を導入する。
一般混合モデルに対する包括的有限サンプル理論を提案する。
次に、この一般理論を特定の統計モデルに適用し、モデルパラメータと混合比例の明示的な推定誤差を特徴づける。
論文 参考訳(メタデータ) (2023-10-23T19:53:36Z) - Representation Theory for Geometric Quantum Machine Learning [0.0]
古典的機械学習の最近の進歩は、問題の対称性を符号化する帰納的バイアスを持つモデルを作成することにより、性能が大幅に向上することを示している。
幾何学量子機械学習(GQML)は、問題固有の量子認識モデルの開発において重要な役割を果たす。
本稿では、離散的および連続的なグループを含む主要な例によって駆動される量子学習の光学から表現論ツールを紹介する。
論文 参考訳(メタデータ) (2022-10-14T17:25:36Z) - Optimization and Sampling Under Continuous Symmetry: Examples and Lie
Theory [26.555110725656963]
リーアンの定理、リー群、リー代数およびハリシュ・チャンドラ-イッツィ積分の公式の例を示す。
次に、連続対称性を捉えるために必要不可欠な数学的ツールキットである最適化理論を紹介する。
論文 参考訳(メタデータ) (2021-09-02T16:44:44Z) - Learning to Prove from Synthetic Theorems [41.74768503409581]
自動定理証明に機械学習を適用する上での大きな課題は、トレーニングデータの不足である。
本稿では,一組の公理から生成される合成定理による学習に依存するアプローチを提案する。
このような定理が自動証明器の訓練に利用でき、学習された証明器が人間の生成した定理にうまく移行できることが示される。
論文 参考訳(メタデータ) (2020-06-19T17:48:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。