Markovianity and non-Markovianity of Particle Bath with Dirac Dispersion Relation
- URL: http://arxiv.org/abs/2406.17436v2
- Date: Sun, 30 Jun 2024 05:28:48 GMT
- Title: Markovianity and non-Markovianity of Particle Bath with Dirac Dispersion Relation
- Authors: Takano Taira, Naomichi Hatano, Akinori Nishino,
- Abstract summary: We study the spontaneous emission of a single Dirac particle within an environment characterized by an energy spectrum with a gap $m$ and an energy cutoff $L$.
Our results reveal that high-energy structures, such as the spectral cutoff $L$, play a critical role in driving the short-time non-exponential decay.
Surprisingly, we find that in the limits where the energy cutoff $L$ is infinite and the energy gap $m$ is zero, the decay dynamics of massless Dirac particles exhibit Markovian behavior.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The decay rate of quantum particles in open quantum systems has traditionally been known as exponential, based on empirical predictions from experiments and theoretical predictions from the Markovian dynamics of the corresponding quantum states. However, both theoretical predictions and experimental observations suggest deviations from this exponential decay, particularly in the short and long time regimes. In this study, we explore the spontaneous emission of a single Dirac particle within an environment characterized by an energy spectrum with a gap $m$ and an energy cutoff $L$. Our results reveal that high-energy structures, such as the spectral cutoff $L$, play a critical role in driving the short-time non-exponential decay. In contrast, the long-time decay is predominantly influenced by low-energy structures, such as the Dirac gap $m$. Surprisingly, we find that in the limits where the energy cutoff $L$ is infinite and the energy gap $m$ is zero, the decay dynamics of massless Dirac particles exhibit Markovian behavior without the need for conventional approximations like the Born-Markov approximation. This work underscores the complex interplay between particle energy properties and decay dynamics, providing new insights into quantum decay processes.
Related papers
- Non-Bloch self-energy of dissipative interacting fermions [4.41737598556146]
The non-Hermitian skin effect describes the phenomenon of exponential localization of single-particle eigenstates near the boundary of the system.
We explore its generalization to the many-body regime by investigating interacting fermions in open quantum systems.
Our formulation provides a quantitative tool for investigating dissipative interacting fermions with non-Hermitian skin effect.
arXiv Detail & Related papers (2024-11-20T19:08:24Z) - Spectral gaps of local quantum channels in the weak-dissipation limit [0.0]
We consider the dynamics of generic chaotic quantum many-body systems with no conservation laws, subject to weak bulk dissipation.
The generator of these dissipative dynamics, a quantum channel $mathcalE$, retains a nonzero gap as the dissipation strength $gamma to 0$ if the thermodynamic limit is taken first.
We argue that the gap in the $gamma to 0$ limit can change nonanalytically as one tunes the parameters of the unitary dynamics.
arXiv Detail & Related papers (2024-09-25T18:00:07Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Vacuum-field-induced state mixing [0.49157446832511503]
We show a surprising decrease of decay rates within a considerable range of atom-nanoparticle separations.
Our work opens new quantum state manipulation possibilities in emitters with closely spaced energy levels.
arXiv Detail & Related papers (2022-12-22T11:14:08Z) - New insights on the quantum-classical division in light of Collapse
Models [63.942632088208505]
We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
arXiv Detail & Related papers (2022-10-19T14:51:21Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - Resonant particle creation by a time-dependent potential in a nonlocal
theory [0.0]
We consider an exactly solvable local quantum theory of a scalar field interacting with a $delta$-shaped time-dependent potential.
We show how these considerations, when suitably generalized to a specific nonlocal "infinite-derivative" quantum theory, are impacted by the presence of nonlocality.
arXiv Detail & Related papers (2020-11-25T18:24:30Z) - Super-exponential diffusion in nonlinear non-Hermitian systems [2.8572548342403024]
We investigate the quantum diffusion of a periodically kicked particle subjecting to both nonlinearity induced self-interactions and $mathcalPT$-symmetric potentials.
In the $mathcalPT$-symmetry-breaking phase, the intensity of a state increases exponentially with time, leading to the exponential growth of the interaction strength.
The feedback of the intensity-dependent nonlinearity further turns the interaction energy into the kinetic energy, resulting in a super-exponential growth of the mean energy.
arXiv Detail & Related papers (2020-10-05T13:04:23Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.