Continuous Urban Change Detection from Satellite Image Time Series with Temporal Feature Refinement and Multi-Task Integration
- URL: http://arxiv.org/abs/2406.17458v1
- Date: Tue, 25 Jun 2024 10:53:57 GMT
- Title: Continuous Urban Change Detection from Satellite Image Time Series with Temporal Feature Refinement and Multi-Task Integration
- Authors: Sebastian Hafner, Heng Fang, Hossein Azizpour, Yifang Ban,
- Abstract summary: Urbanization advances at unprecedented rates, resulting in negative effects on the environment and human well-being.
Deep learning-based methods have achieved promising urban change detection results from optical satellite image pairs.
We propose a continuous urban change detection method that identifies changes in each consecutive image pair of a satellite image time series.
- Score: 5.095834019284525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urbanization advances at unprecedented rates, resulting in negative effects on the environment and human well-being. Remote sensing has the potential to mitigate these effects by supporting sustainable development strategies with accurate information on urban growth. Deep learning-based methods have achieved promising urban change detection results from optical satellite image pairs using convolutional neural networks (ConvNets), transformers, and a multi-task learning setup. However, transformers have not been leveraged for urban change detection with multi-temporal data, i.e., >2 images, and multi-task learning methods lack integration approaches that combine change and segmentation outputs. To fill this research gap, we propose a continuous urban change detection method that identifies changes in each consecutive image pair of a satellite image time series. Specifically, we propose a temporal feature refinement (TFR) module that utilizes self-attention to improve ConvNet-based multi-temporal building representations. Furthermore, we propose a multi-task integration (MTI) module that utilizes Markov networks to find an optimal building map time series based on segmentation and dense change outputs. The proposed method effectively identifies urban changes based on high-resolution satellite image time series acquired by the PlanetScope constellation (F1 score 0.551) and Gaofen-2 (F1 score 0.440). Moreover, our experiments on two challenging datasets demonstrate the effectiveness of the proposed method compared to bi-temporal and multi-temporal urban change detection and segmentation methods.
Related papers
- Changen2: Multi-Temporal Remote Sensing Generative Change Foundation Model [62.337749660637755]
We present change data generators based on generative models which are cheap and automatic.
Changen2 is a generative change foundation model that can be trained at scale via self-supervision.
The resulting model possesses inherent zero-shot change detection capabilities and excellent transferability.
arXiv Detail & Related papers (2024-06-26T01:03:39Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Transformer-based Multimodal Change Detection with Multitask Consistency Constraints [10.906283981247796]
Current change detection methods struggle with the multitask conflicts between semantic and height change detection tasks.
We propose an efficient Transformer-based network that learns shared representation between cross-dimensional inputs through cross-attention.
Compared to five state-of-the-art change detection methods, our model demonstrates consistent multitask superiority in terms of semantic and height change detection.
arXiv Detail & Related papers (2023-10-13T17:38:45Z) - A Dual Attentive Generative Adversarial Network for Remote Sensing Image
Change Detection [6.906936669510404]
We propose a dual attentive generative adversarial network for achieving very high-resolution remote sensing image change detection tasks.
The DAGAN framework has better performance with 85.01% mean IoU and 91.48% mean F1 score than advanced methods on the LEVIR dataset.
arXiv Detail & Related papers (2023-10-03T08:26:27Z) - Remote Sensing Image Change Detection with Graph Interaction [1.8579693774597708]
We propose a bitemporal image graph Interaction network for remote sensing change detection, namely BGINet-CD.
Our model demonstrates superior performance compared to other state-of-the-art methods (SOTA) on the GZ CD dataset.
arXiv Detail & Related papers (2023-07-05T03:32:49Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - dual unet:a novel siamese network for change detection with cascade
differential fusion [4.651756476458979]
We propose a novel Siamese neural network for change detection task, namely Dual-UNet.
In contrast to previous individually encoded the bitemporal images, we design an encoder differential-attention module to focus on the spatial difference relationships of pixels.
Experiments demonstrate that the proposed approach consistently outperforms the most advanced methods on popular seasonal change detection datasets.
arXiv Detail & Related papers (2022-08-12T14:24:09Z) - SatMAE: Pre-training Transformers for Temporal and Multi-Spectral
Satellite Imagery [74.82821342249039]
We present SatMAE, a pre-training framework for temporal or multi-spectral satellite imagery based on Masked Autoencoder (MAE)
To leverage temporal information, we include a temporal embedding along with independently masking image patches across time.
arXiv Detail & Related papers (2022-07-17T01:35:29Z) - City-scale Scene Change Detection using Point Clouds [71.73273007900717]
We propose a method for detecting structural changes in a city using images captured from mounted cameras over two different times.
A direct comparison of the two point clouds for change detection is not ideal due to inaccurate geo-location information.
To circumvent this problem, we propose a deep learning-based non-rigid registration on the point clouds.
Experiments show that our method is able to detect scene changes effectively, even in the presence of viewpoint and illumination differences.
arXiv Detail & Related papers (2021-03-26T08:04:13Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
Given two aerial images, semantic change detection aims to locate the land-cover variations and identify their change types with pixel-wise boundaries.
This problem is vital in many earth vision related tasks, such as precise urban planning and natural resource management.
We present an asymmetric siamese network (ASN) to locate and identify semantic changes through feature pairs obtained from modules of widely different structures.
arXiv Detail & Related papers (2020-10-12T13:26:30Z) - Unsupervised Change Detection in Satellite Images with Generative
Adversarial Network [20.81970476609318]
We propose a novel change detection framework utilizing a special neural network architecture -- Generative Adversarial Network (GAN) to generate better coregistered images.
The optimized GAN model would produce better coregistered images where changes can be easily spotted and then the change map can be presented through a comparison strategy.
arXiv Detail & Related papers (2020-09-08T10:26:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.