Querying Labelled Data with Scenario Programs for Sim-to-Real Validation
- URL: http://arxiv.org/abs/2112.00206v1
- Date: Wed, 1 Dec 2021 01:04:13 GMT
- Title: Querying Labelled Data with Scenario Programs for Sim-to-Real Validation
- Authors: Edward Kim, Jay Shenoy, Sebastian Junges, Daniel Fremont, Alberto
Sangiovanni-Vincentelli, Sanjit Seshia
- Abstract summary: A fundamental question remains: are AV failure scenarios identified in simulation meaningful in reality, i.e., are they reproducible on the real system?
An approach to validate simulated failure scenarios is to identify instances of the scenario in a corpus of real data, and check if the failure persists on the real data.
We propose a formal definition of what it means for a labelled data item to match an abstract scenario, encoded as a scenario program using the SCENIC probabilistic programming language.
- Score: 5.8720142291102135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation-based testing of autonomous vehicles (AVs) has become an essential
complement to road testing to ensure safety. Consequently, substantial research
has focused on searching for failure scenarios in simulation. However, a
fundamental question remains: are AV failure scenarios identified in simulation
meaningful in reality, i.e., are they reproducible on the real system? Due to
the sim-to-real gap arising from discrepancies between simulated and real
sensor data, a failure scenario identified in simulation can be either a
spurious artifact of the synthetic sensor data or an actual failure that
persists with real sensor data. An approach to validate simulated failure
scenarios is to identify instances of the scenario in a corpus of real data,
and check if the failure persists on the real data. To this end, we propose a
formal definition of what it means for a labelled data item to match an
abstract scenario, encoded as a scenario program using the SCENIC probabilistic
programming language. Using this definition, we develop a querying algorithm
which, given a scenario program and a labelled dataset, finds the subset of
data matching the scenario. Experiments demonstrate that our algorithm is
accurate and efficient on a variety of realistic traffic scenarios, and scales
to a reasonable number of agents.
Related papers
- Querying Labeled Time Series Data with Scenario Programs [0.0]
We propose a formal definition of what constitutes a match between a real-world labeled time series data item and a simulated scenario.
We present a definition and algorithm for matching scalable beyond the autonomous vehicles domain.
arXiv Detail & Related papers (2024-06-25T15:15:27Z) - NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking [65.24988062003096]
We present NAVSIM, a framework for benchmarking vision-based driving policies.
Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other.
NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights.
arXiv Detail & Related papers (2024-06-21T17:59:02Z) - Causality-based Transfer of Driving Scenarios to Unseen Intersections [0.0]
In scenario-based testing automated functions are evaluated in a set of pre-defined scenarios.
To create realistic scenarios, parameters and parameter dependencies have to be fitted utilizing real-world data.
This paper proposes a methodology to systematically analyze relations between parameters of scenarios.
arXiv Detail & Related papers (2024-04-02T15:38:18Z) - UniSim: A Neural Closed-Loop Sensor Simulator [76.79818601389992]
We present UniSim, a neural sensor simulator that takes a single recorded log captured by a sensor-equipped vehicle.
UniSim builds neural feature grids to reconstruct both the static background and dynamic actors in the scene.
We incorporate learnable priors for dynamic objects, and leverage a convolutional network to complete unseen regions.
arXiv Detail & Related papers (2023-08-03T17:56:06Z) - Quantifying the LiDAR Sim-to-Real Domain Shift: A Detailed Investigation
Using Object Detectors and Analyzing Point Clouds at Target-Level [1.1999555634662635]
LiDAR object detection algorithms based on neural networks for autonomous driving require large amounts of data for training, validation, and testing.
We show that using simulated data for the training of neural networks leads to a domain shift of training and testing data due to differences in scenes, scenarios, and distributions.
arXiv Detail & Related papers (2023-03-03T12:52:01Z) - Data-SUITE: Data-centric identification of in-distribution incongruous
examples [81.21462458089142]
Data-SUITE is a data-centric framework to identify incongruous regions of in-distribution (ID) data.
We empirically validate Data-SUITE's performance and coverage guarantees.
arXiv Detail & Related papers (2022-02-17T18:58:31Z) - Simulated Adversarial Testing of Face Recognition Models [53.10078734154151]
We propose a framework for learning how to test machine learning algorithms using simulators in an adversarial manner.
We are the first to show that weaknesses of models trained on real data can be discovered using simulated samples.
arXiv Detail & Related papers (2021-06-08T17:58:10Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z) - Efficient statistical validation with edge cases to evaluate Highly
Automated Vehicles [6.198523595657983]
The widescale deployment of Autonomous Vehicles seems to be imminent despite many safety challenges that are yet to be resolved.
Existing standards focus on deterministic processes where the validation requires only a set of test cases that cover the requirements.
This paper presents a new approach to compute the statistical characteristics of a system's behaviour by biasing automatically generated test cases towards the worst case scenarios.
arXiv Detail & Related papers (2020-03-04T04:35:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.