論文の概要: KANQAS: Kolmogorov-Arnold Network for Quantum Architecture Search
- arxiv url: http://arxiv.org/abs/2406.17630v3
- Date: Wed, 11 Dec 2024 22:52:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:30:19.780353
- Title: KANQAS: Kolmogorov-Arnold Network for Quantum Architecture Search
- Title(参考訳): KanQAS: Kolmogorov-Arnold Network for Quantum Architecture Search
- Authors: Akash Kundu, Aritra Sarkar, Abhishek Sadhu,
- Abstract要約: 我々は量子探索(QAS)アルゴリズムでKAN(Kolmogorov-Arnold Network)を用いて、量子状態の準備と量子化学のタスクにおける効率を解析する。
量子状態調製では、ノイズのないシナリオでは、成功確率はロバストネスの2倍から5倍であることを示す。
量子化学問題に対処するため,最近提案されたQASアルゴリズムを,KAN構造とカリキュラム強化学習を統合して拡張する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Quantum architecture Search (QAS) is a promising direction for optimization and automated design of quantum circuits towards quantum advantage. Recent techniques in QAS emphasize Multi-Layer Perceptron (MLP)-based deep Q-networks. However, their interpretability remains challenging due to the large number of learnable parameters and the complexities involved in selecting appropriate activation functions. In this work, to overcome these challenges, we utilize the Kolmogorov-Arnold Network (KAN) in the QAS algorithm, analyzing their efficiency in the task of quantum state preparation and quantum chemistry. In quantum state preparation, our results show that in a noiseless scenario, the probability of success is 2 to 5 times higher than MLPs. In noisy environments, KAN outperforms MLPs in fidelity when approximating these states, showcasing its robustness against noise. In tackling quantum chemistry problems, we enhance the recently proposed QAS algorithm by integrating curriculum reinforcement learning with a KAN structure. This facilitates a more efficient design of parameterized quantum circuits by reducing the number of required 2-qubit gates and circuit depth. Further investigation reveals that KAN requires a significantly smaller number of learnable parameters compared to MLPs; however, the average time of executing each episode for KAN is higher.
- Abstract(参考訳): 量子アーキテクチャ探索(QAS)は量子回路の最適化と自動設計のための有望な方向である。
QASの最近の技術は、MLP(Multi-Layer Perceptron)ベースのディープQ-networksを強調している。
しかし、多くの学習可能なパラメータと適切なアクティベーション関数の選択に関わる複雑さのため、それらの解釈性は依然として困難である。
本研究では,これらの課題を克服するために,QASアルゴリズムにおいてKAN(Kolmogorov-Arnold Network)を用いて,量子状態準備と量子化学のタスクにおける効率を解析する。
量子状態調製では、ノイズのないシナリオでは、成功確率はMPPの2倍から5倍になる。
ノイズの多い環境では、KANはこれらの状態を近似するとMLPを忠実に上回り、ノイズに対する頑健さを示す。
量子化学問題に対処するため,最近提案されたQASアルゴリズムを,KAN構造とカリキュラム強化学習を統合して拡張する。
これにより、必要となる2量子ビットゲートと回路深さの数を減らし、より効率的なパラメータ化量子回路の設計が容易となる。
さらなる調査により,KAN は MLP と比較して学習可能なパラメータがかなり少ないことが明らかになったが,KAN の各エピソードの実行時間の平均は高い。
関連論文リスト
- Diffusion-Inspired Quantum Noise Mitigation in Parameterized Quantum Circuits [10.073911279652918]
量子ノイズと拡散モデルの関係について検討する。
本稿では,PQCにおける量子ノイズを軽減するために,拡散に着想を得た新しい学習手法を提案する。
論文 参考訳(メタデータ) (2024-06-02T19:35:38Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Reinforcement learning-assisted quantum architecture search for variational quantum algorithms [0.0]
この論文は、ノイズの多い量子ハードウェアにおける機能量子回路の同定に焦点を当てている。
本稿では, テンソルを用いた量子回路の符号化, 環境力学の制約により, 可能な回路の探索空間を効率的に探索する。
様々なVQAを扱う際、我々のRLベースのQASは既存のQASよりも優れています。
論文 参考訳(メタデータ) (2024-02-21T12:30:39Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
量子ネットワーク(QN)は、セキュアな通信、強化されたセンシング、効率的な分散量子コンピューティングのための有望なプラットフォームである。
量子状態の脆弱な性質のため、これらのネットワークはスケーラビリティの観点から大きな課題に直面している。
本稿では,量子リピータネットワーク(QRN)のスケーリング限界について解析する。
論文 参考訳(メタデータ) (2023-05-15T14:57:01Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - DeepQMLP: A Scalable Quantum-Classical Hybrid DeepNeural Network
Architecture for Classification [6.891238879512672]
量子機械学習(QML)は、従来の機械学習(ML)タスクの潜在的なスピードアップと改善を約束している。
本稿では、古典的なディープニューラルネットワークアーキテクチャにインスパイアされたスケーラブルな量子古典ハイブリッドニューラルネットワーク(DeepQMLP)アーキテクチャを提案する。
DeepQMLPは、ノイズ下での推論において、最大25.3%の損失と7.92%の精度を提供する。
論文 参考訳(メタデータ) (2022-02-02T15:29:46Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
本稿では、離散的かつ連続的な状態空間に対するRLタスクを解くために使用できるパラメタライズド量子回路(PQC)のトレーニング手法を提案する。
量子Q学習エージェントのどのアーキテクチャ選択が、特定の種類の環境をうまく解決するのに最も重要であるかを検討する。
論文 参考訳(メタデータ) (2021-03-28T08:57:22Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。