論文の概要: HGTDP-DTA: Hybrid Graph-Transformer with Dynamic Prompt for Drug-Target Binding Affinity Prediction
- arxiv url: http://arxiv.org/abs/2406.17697v1
- Date: Tue, 25 Jun 2024 16:33:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 13:41:09.715254
- Title: HGTDP-DTA: Hybrid Graph-Transformer with Dynamic Prompt for Drug-Target Binding Affinity Prediction
- Title(参考訳): HGTDP-DTA:ドラッグターゲット結合親和性予測のための動的プロンプト付きハイブリッドグラフ変換器
- Authors: Xi Xiao, Wentao Wang, Jiacheng Xie, Lijing Zhu, Gaofei Chen, Zhengji Li, Tianyang Wang, Min Xu,
- Abstract要約: 薬物標的結合親和性(DTA)は薬物スクリーニングの重要な基準である。
本研究では,HGTDP-DTAと呼ばれる新しいDTA予測手法を提案する。
本手法は,各薬物・標的ペアに対してコンテキスト特異的なプロンプトを生成し,ユニークな相互作用を捕捉するモデルの能力を高める。
Davis と KIBA の2つの広く使われている公開データセットの実験により、HGTDP-DTA は予測性能と一般化能力の両方において最先端のDTA予測手法より優れていることが示された。
- 参考スコア(独自算出の注目度): 14.866669337498257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drug target binding affinity (DTA) is a key criterion for drug screening. Existing experimental methods are time-consuming and rely on limited structural and domain information. While learning-based methods can model sequence and structural information, they struggle to integrate contextual data and often lack comprehensive modeling of drug-target interactions. In this study, we propose a novel DTA prediction method, termed HGTDP-DTA, which utilizes dynamic prompts within a hybrid Graph-Transformer framework. Our method generates context-specific prompts for each drug-target pair, enhancing the model's ability to capture unique interactions. The introduction of prompt tuning further optimizes the prediction process by filtering out irrelevant noise and emphasizing task-relevant information, dynamically adjusting the input features of the molecular graph. The proposed hybrid Graph-Transformer architecture combines structural information from Graph Convolutional Networks (GCNs) with sequence information captured by Transformers, facilitating the interaction between global and local information. Additionally, we adopted the multi-view feature fusion method to project molecular graph views and affinity subgraph views into a common feature space, effectively combining structural and contextual information. Experiments on two widely used public datasets, Davis and KIBA, show that HGTDP-DTA outperforms state-of-the-art DTA prediction methods in both prediction performance and generalization ability.
- Abstract(参考訳): 薬物標的結合親和性(DTA)は薬物スクリーニングの重要な基準である。
既存の実験手法は時間がかかり、限られた構造情報やドメイン情報に依存している。
学習に基づく手法は、シーケンスと構造情報をモデル化できるが、コンテキストデータの統合に苦慮し、しばしば薬物と標的の相互作用の包括的なモデリングを欠いている。
本研究では,HGTDP-DTAと呼ばれるハイブリッドグラフトランスフォーマフレームワーク内で動的プロンプトを利用する新しいDTA予測手法を提案する。
本手法は,各薬物・標的ペアに対してコンテキスト特異的なプロンプトを生成し,ユニークな相互作用を捕捉するモデルの能力を高める。
プロンプトチューニングの導入により、無関係なノイズを除去し、タスク関連情報を強調することにより予測プロセスを最適化し、分子グラフの入力特性を動的に調整する。
提案したハイブリッドなGraph-Transformerアーキテクチャは,Graph Convolutional Networks(GCNs)の構造情報とTransformerが取得したシーケンス情報を組み合わせることで,グローバル情報とローカル情報とのインタラクションを容易にする。
さらに、分子グラフビューと親和性サブグラフビューを共通特徴空間に投影する多視点特徴融合法を採用し、構造情報と文脈情報を効果的に組み合わせた。
Davis と KIBA の2つの広く使われている公開データセットの実験により、HGTDP-DTA は予測性能と一般化能力の両方において最先端のDTA予測手法より優れていることが示された。
関連論文リスト
- MKDTI: Predicting drug-target interactions via multiple kernel fusion on graph attention network [37.40418564922425]
グラフアテンションネットワークの様々な層埋め込みからカーネル情報を抽出することにより、MKDTIと呼ばれるモデルを定式化する。
我々は、Dual Laplacian Regularized Least Squaresフレームワークを使用して、新規なドラッグターゲットエンティティ接続を予測する。
論文 参考訳(メタデータ) (2024-07-14T02:53:25Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
薬物と標的の相互作用の予測は、薬物の発見と設計に不可欠である。
グラフニューラルネットワーク(GNN)やトランスフォーマーに基づく最近の手法は、さまざまなデータセットで例外的なパフォーマンスを示している。
我々は,GNNベースと暗黙的(トランスフォーマーベース)構造学習アルゴリズムを多用することにより,構造の観点からの薬物-標的相互作用モデリングの総合的な調査とベンチマークを行う。
論文 参考訳(メタデータ) (2024-07-04T16:56:59Z) - Through the Dual-Prism: A Spectral Perspective on Graph Data
Augmentation for Graph Classification [71.36575018271405]
本稿では,DP-NoiseとDP-Maskを組み合わせたDual-Prism(DP)拡張手法を提案する。
低周波固有値の変動を保ちながら、拡張グラフを生成する際に、臨界特性を大規模に保存できることが判明した。
論文 参考訳(メタデータ) (2024-01-18T12:58:53Z) - Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
マルチタスク学習に基づく新しいDynSGGモデルDynSGG-MTLを提案する。
長期的人間の行動は、大域的な制約に適合する複数のシーングラフを生成するためにモデルを監督し、尾の述語を学べないモデルを避ける。
論文 参考訳(メタデータ) (2023-08-10T01:24:25Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Hierarchical Graph Representation Learning for the Prediction of
Drug-Target Binding Affinity [7.023929372010717]
本稿では,薬物結合親和性予測,すなわちHGRL-DTAのための新しい階層グラフ表現学習モデルを提案する。
本稿では,グローバルレベルの親和性グラフと局所レベルの分子グラフから得られた階層的表現を統合するためのメッセージブロードキャスティング機構を採用し,また,類似性に基づく埋め込みマップを設計し,未知の薬物や標的に対する表現の推論というコールドスタート問題を解決する。
論文 参考訳(メタデータ) (2022-03-22T04:50:16Z) - PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting [4.14360329494344]
我々は、プログレッシブグラフ畳み込みネットワーク(PGCN)と呼ばれる新しいトラフィック予測フレームワークを提案する。
PGCNは、トレーニングおよびテストフェーズ中にオンライン入力データに段階的に適応することで、グラフのセットを構築する。
提案したモデルでは,すべてのデータセットの一貫性を保ちながら,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-02-18T02:15:44Z) - Masked Transformer for Neighhourhood-aware Click-Through Rate Prediction [74.52904110197004]
本稿では,近隣相互作用に基づくCTR予測を提案し,そのタスクを異種情報ネットワーク(HIN)設定に組み込む。
周辺地域の表現を高めるために,ノード間のトポロジカルな相互作用を4種類検討する。
本研究では,2つの実世界のデータセットに関する総合的な実験を行い,提案手法が最先端のCTRモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2022-01-25T12:44:23Z) - AMA-GCN: Adaptive Multi-layer Aggregation Graph Convolutional Network
for Disease Prediction [20.19380805655623]
空間分布に応じて適切な表現型尺度を自動的に選択するエンコーダを提案する。
また,多層アグリゲーション機構を用いた新しいグラフ畳み込みネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-06-16T12:13:23Z) - Distance-aware Molecule Graph Attention Network for Drug-Target Binding
Affinity Prediction [54.93890176891602]
薬物標的結合親和性予測に適したDiStance-aware Molecule graph Attention Network (S-MAN)を提案する。
そこで,我々はまず,構築したポケットリガンドグラフに位相構造と空間位置情報を統合する位置符号化機構を提案する。
また,エッジレベルアグリゲーションとノードレベルアグリゲーションを有するエッジノード階層的アグリゲーション構造を提案する。
論文 参考訳(メタデータ) (2020-12-17T17:44:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。