論文の概要: MOTIVE: A Drug-Target Interaction Graph For Inductive Link Prediction
- arxiv url: http://arxiv.org/abs/2406.08649v2
- Date: Wed, 23 Oct 2024 15:29:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:52:32.621999
- Title: MOTIVE: A Drug-Target Interaction Graph For Inductive Link Prediction
- Title(参考訳): MOTIVE:インダクティブリンク予測のためのドラッグとターゲットの相互作用グラフ
- Authors: John Arevalo, Ellen Su, Anne E Carpenter, Shantanu Singh,
- Abstract要約: 本稿では,11,000遺伝子と3,600化合物のセルペイント機能を有する形態的cOmpoundターゲット相互作用グラフであるMOTIVEについて紹介する。
我々は、現実的なユースケース下で厳密な評価を可能にするために、ランダムでコールドソース(新薬)とコールドターゲット(新遺伝子)データを分割する。
ベンチマークの結果,Cell Painting機能を用いたグラフニューラルネットワークは,グラフ構造のみから学習したニューラルネットワークよりも一貫して優れていた。
- 参考スコア(独自算出の注目度): 0.29998889086656577
- License:
- Abstract: Drug-target interaction (DTI) prediction is crucial for identifying new therapeutics and detecting mechanisms of action. While structure-based methods accurately model physical interactions between a drug and its protein target, cell-based assays such as Cell Painting can better capture complex DTI interactions. This paper introduces MOTIVE, a Morphological cOmpound Target Interaction Graph dataset comprising Cell Painting features for 11,000 genes and 3,600 compounds, along with their relationships extracted from seven publicly available databases. We provide random, cold-source (new drugs), and cold-target (new genes) data splits to enable rigorous evaluation under realistic use cases. Our benchmark results show that graph neural networks that use Cell Painting features consistently outperform those that learn from graph structure alone, feature-based models, and topological heuristics. MOTIVE accelerates both graph ML research and drug discovery by promoting the development of more reliable DTI prediction models. MOTIVE resources are available at https://github.com/carpenter-singh-lab/motive.
- Abstract(参考訳): 薬物-標的相互作用(DTI)予測は、新しい治療法を特定し、行動のメカニズムを検出するために重要である。
構造に基づく手法は、薬物とタンパク質標的との物理的相互作用を正確にモデル化するが、細胞ペイントのような細胞に基づくアッセイは複雑なDTI相互作用をより正確に捉えることができる。
本稿では,11,000の遺伝子と3,600の化合物のセルペイント機能を含む形態的cOmpoundターゲット相互作用グラフデータセットであるMOTIVEを紹介し,それらの関係を7つの公開データベースから抽出した。
我々は、現実的なユースケース下で厳密な評価を可能にするために、ランダム、コールドソース(新薬)、コールドターゲット(新遺伝子)データを分割する。
ベンチマークの結果,セルペイント機能を用いたグラフニューラルネットワークは,グラフ構造のみから学習した者,特徴ベースモデル,トポロジカルヒューリスティックスを一貫して上回っていることがわかった。
MOTIVEは、より信頼性の高いDTI予測モデルの開発を促進することで、グラフML研究と薬物発見の両方を加速する。
MOTIVEリソースはhttps://github.com/carpenter-singh-lab/motive.comで入手できる。
関連論文リスト
- MKDTI: Predicting drug-target interactions via multiple kernel fusion on graph attention network [37.40418564922425]
グラフアテンションネットワークの様々な層埋め込みからカーネル情報を抽出することにより、MKDTIと呼ばれるモデルを定式化する。
我々は、Dual Laplacian Regularized Least Squaresフレームワークを使用して、新規なドラッグターゲットエンティティ接続を予測する。
論文 参考訳(メタデータ) (2024-07-14T02:53:25Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
薬物と標的の相互作用の予測は、薬物の発見と設計に不可欠である。
グラフニューラルネットワーク(GNN)やトランスフォーマーに基づく最近の手法は、さまざまなデータセットで例外的なパフォーマンスを示している。
我々は,GNNベースと暗黙的(トランスフォーマーベース)構造学習アルゴリズムを多用することにより,構造の観点からの薬物-標的相互作用モデリングの総合的な調査とベンチマークを行う。
論文 参考訳(メタデータ) (2024-07-04T16:56:59Z) - HiGraphDTI: Hierarchical Graph Representation Learning for Drug-Target Interaction Prediction [15.005837084219355]
階層型グラフ表現学習に基づくDTI予測法(HiGraphDTI)を提案する。
具体的には、HiGraphDTIは三重レベル分子グラフから階層的な薬物表現を学び、原子、モチーフ、分子に埋め込まれた化学情報を徹底的に活用する。
注目特徴融合モジュールは、異なる受容領域からの情報を組み込んで表現対象特徴を抽出する。
論文 参考訳(メタデータ) (2024-04-16T13:35:24Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
分子間相互作用予測のためのバイオKDN (Biomedical Knowledge Graph Denoising Network) を提案する。
BioKDNは、ノイズの多いリンクを学習可能な方法で識別することで、局所的な部分グラフの信頼性の高い構造を洗練する。
ターゲットの相互作用に関する関係を円滑にすることで、一貫性とロバストなセマンティクスを維持する。
論文 参考訳(メタデータ) (2023-12-09T07:08:00Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Hierarchical Graph Representation Learning for the Prediction of
Drug-Target Binding Affinity [7.023929372010717]
本稿では,薬物結合親和性予測,すなわちHGRL-DTAのための新しい階層グラフ表現学習モデルを提案する。
本稿では,グローバルレベルの親和性グラフと局所レベルの分子グラフから得られた階層的表現を統合するためのメッセージブロードキャスティング機構を採用し,また,類似性に基づく埋め込みマップを設計し,未知の薬物や標的に対する表現の推論というコールドスタート問題を解決する。
論文 参考訳(メタデータ) (2022-03-22T04:50:16Z) - HampDTI: a heterogeneous graph automatic meta-path learning method for
drug-target interaction prediction [4.499861098235355]
異種グラフ自動メタパス学習に基づくDTI予測法(HampDTI)を提案する。
HampDTIは、薬物と標的の間の重要なメタパスをHNから自動的に学習し、メタパスグラフを生成する。
ベンチマークデータを用いた実験により,提案したHampDTIは最先端のDTI予測手法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2021-12-16T02:12:03Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
本稿では,3方向トランスフォーマーアーキテクチャを用いて分子間情報をモデル化する手法を提案する。
分子間グラフ変換器(IGT)は、それぞれ、結合活性と結合ポーズ予測の2番目のベストに対して、最先端のアプローチを9.1%と20.5%で上回っている。
IGTはSARS-CoV-2に対して有望な薬物スクリーニング能力を示す。
論文 参考訳(メタデータ) (2021-10-14T13:28:02Z) - Drug-Target Interaction Prediction with Graph Attention networks [26.40249934284416]
DTI予測のためのエンドツーエンドフレームワークであるDTI-GAT(Drug-Target Interaction Prediction with Graph Attention Network)を提案する。
DTI-GATは、注目機構を備えたグラフ構造化データで動作するディープネットワークニューラルアーキテクチャを組み込んでいる。
実験により、DTI-GATはバイナリDTI予測問題において、様々な最先端システムより優れていることが示された。
論文 参考訳(メタデータ) (2021-07-10T07:06:36Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
本稿では,抗がん剤感受性の予測にトランスファーラーニングを適用した。
我々は、ソースデータセット上で予測モデルをトレーニングし、ターゲットデータセット上でそれを洗練する古典的な転送学習フレームワークを適用した。
アンサンブル転送学習パイプラインは、LightGBMと異なるアーキテクチャを持つ2つのディープニューラルネットワーク(DNN)モデルを使用して実装されている。
論文 参考訳(メタデータ) (2020-05-13T20:29:48Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
薬物標的相互作用(DTI)予測は、シリコ薬物発見の基本的な課題である。
近年、DTI予測におけるディープラーニングの進歩が期待されている。
これらの制約に対処する分子間相互作用変換器(TransMol)を提案する。
論文 参考訳(メタデータ) (2020-04-23T18:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。