Multi-objective Binary Differential Approach with Parameter Tuning for Discovering Business Process Models: MoD-ProM
- URL: http://arxiv.org/abs/2406.17713v1
- Date: Tue, 25 Jun 2024 16:53:55 GMT
- Title: Multi-objective Binary Differential Approach with Parameter Tuning for Discovering Business Process Models: MoD-ProM
- Authors: Sonia Deshmukh, Shikha Gupta, Naveen Kumar,
- Abstract summary: We consider the Binary Differential Evolution approach in a multi-objective framework for the task of process discovery.
It is shown that the process models generated by the proposed approach are superior to or at least as good as those generated by the state-of-the-art algorithms.
- Score: 2.3423913554158653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Process discovery approaches analyze the business data to automatically uncover structured information, known as a process model. The quality of a process model is measured using quality dimensions -- completeness (replay fitness), preciseness, simplicity, and generalization. Traditional process discovery algorithms usually output a single process model. A single model may not accurately capture the observed behavior and overfit the training data. We have formed the process discovery problem in a multi-objective framework that yields several candidate solutions for the end user who can pick a suitable model based on the local environmental constraints (possibly varying). We consider the Binary Differential Evolution approach in a multi-objective framework for the task of process discovery. The proposed method employs dichotomous crossover/mutation operators. The parameters are tuned using Grey relational analysis combined with the Taguchi approach. {We have compared the proposed approach with the well-known single-objective algorithms and state-of-the-art multi-objective evolutionary algorithm -- Non-dominated Sorting Genetic Algorithm (NSGA-II).} Additional comparison via computing a weighted average of the quality dimensions is also undertaken. Results show that the proposed algorithm is computationally efficient and produces diversified candidate solutions that score high on the fitness functions. It is shown that the process models generated by the proposed approach are superior to or at least as good as those generated by the state-of-the-art algorithms.
Related papers
- Comparative study of regression vs pairwise models for surrogate-based heuristic optimisation [1.2535250082638645]
This paper addresses the formulation of surrogate problems as both regression models that approximate fitness (surface surrogate models) and a novel way to connect classification models (pairwise surrogate models)
The performance of the overall search, when using online machine learning-based surrogate models, depends not only on the accuracy of the predictive model but also on the kind of bias towards positive or negative cases.
arXiv Detail & Related papers (2024-10-04T13:19:06Z) - Pattern based learning and optimisation through pricing for bin packing problem [50.83768979636913]
We argue that when problem conditions such as the distributions of random variables change, the patterns that performed well in previous circumstances may become less effective.
We propose a novel scheme to efficiently identify patterns and dynamically quantify their values for each specific condition.
Our method quantifies the value of patterns based on their ability to satisfy constraints and their effects on the objective value.
arXiv Detail & Related papers (2024-08-27T17:03:48Z) - Scalable and adaptive variational Bayes methods for Hawkes processes [4.580983642743026]
We propose a novel sparsity-inducing procedure, and derive an adaptive mean-field variational algorithm for the popular sigmoid Hawkes processes.
Our algorithm is parallelisable and therefore computationally efficient in high-dimensional setting.
arXiv Detail & Related papers (2022-12-01T05:35:32Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
The paper presents an approach to process mining providing semi-automatic support to model optimization.
A model simplification approach is proposed, which essentially abstracts the raw model at the desired granularity.
We aim to demonstrate the capabilities of the technological solution using three datasets from different applications in the healthcare domain.
arXiv Detail & Related papers (2022-06-10T16:20:59Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms.
We distinguish between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both.
We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.
arXiv Detail & Related papers (2021-11-23T10:22:30Z) - Multi-Objective Evolutionary Design of CompositeData-Driven Models [0.0]
The implemented approach is based on a parameter-free genetic algorithm for model design called GPComp@Free.
The experimental results confirm that a multi-objective approach to the model design allows achieving better diversity and quality of obtained models.
arXiv Detail & Related papers (2021-03-01T20:45:24Z) - Evolutionary Variational Optimization of Generative Models [0.0]
We combine two popular optimization approaches to derive learning algorithms for generative models: variational optimization and evolutionary algorithms.
We show that evolutionary algorithms can effectively and efficiently optimize the variational bound.
In the category of "zero-shot" learning, we observed the evolutionary variational algorithm to significantly improve the state-of-the-art in many benchmark settings.
arXiv Detail & Related papers (2020-12-22T19:06:33Z) - Landscape-Aware Fixed-Budget Performance Regression and Algorithm
Selection for Modular CMA-ES Variants [1.0965065178451106]
We show that it is possible to achieve high-quality performance predictions with off-the-shelf supervised learning approaches.
We test this approach on a portfolio of very similar algorithms, which we choose from the family of modular CMA-ES algorithms.
arXiv Detail & Related papers (2020-06-17T13:34:57Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
We present a robust estimator for fitting multiple parametric models of the same form to noisy measurements.
In contrast to previous works, which resorted to hand-crafted search strategies for multiple model detection, we learn the search strategy from data.
For self-supervised learning of the search, we evaluate the proposed algorithm on multi-homography estimation and demonstrate an accuracy that is superior to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-08T17:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.