Compositional Models for Estimating Causal Effects
- URL: http://arxiv.org/abs/2406.17714v1
- Date: Tue, 25 Jun 2024 16:56:17 GMT
- Title: Compositional Models for Estimating Causal Effects
- Authors: Purva Pruthi, David Jensen,
- Abstract summary: We study a compositional approach for estimating individual treatment effects in structured systems.
This approach uses a modular architecture to model potential outcomes at each component.
We discover novel benefits of the compositional approach in causal inference.
- Score: 0.9208007322096533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many real-world systems can be represented as sets of interacting components. Examples of such systems include computational systems such as query processors, natural systems such as cells, and social systems such as families. Many approaches have been proposed in traditional (associational) machine learning to model such structured systems, including statistical relational models and graph neural networks. Despite this prior work, existing approaches to estimating causal effects typically treat such systems as single units, represent them with a fixed set of variables and assume a homogeneous data-generating process. We study a compositional approach for estimating individual treatment effects (ITE) in structured systems, where each unit is represented by the composition of multiple heterogeneous components. This approach uses a modular architecture to model potential outcomes at each component and aggregates component-level potential outcomes to obtain the unit-level potential outcomes. We discover novel benefits of the compositional approach in causal inference - systematic generalization to estimate counterfactual outcomes of unseen combinations of components and improved overlap guarantees between treatment and control groups compared to the classical methods for causal effect estimation. We also introduce a set of novel environments for empirically evaluating the compositional approach and demonstrate the effectiveness of our approach using both simulated and real-world data.
Related papers
- On uniqueness in structured model learning [0.542249320079018]
This paper addresses the problem of uniqueness in learning physical laws for systems of partial differential equations (PDEs)
It considers a framework of structured model learning, where existing, approximately correct physical models are augmented with components that are learned from data.
The uniqueness result shows that, in the idealized setting of full, noiseless measurements, a unique identification of the unknown model components is possible.
arXiv Detail & Related papers (2024-10-29T12:56:39Z) - A VAE-based Framework for Learning Multi-Level Neural Granger-Causal
Connectivity [15.295157876811066]
This paper introduces a Variational Autoencoder based framework that jointly learns Granger-causal relationships amongst components in a collection of related-yet-heterogeneous dynamical systems.
The performance of the proposed framework is evaluated on several synthetic data settings and benchmarked against existing approaches designed for individual system learning.
arXiv Detail & Related papers (2024-02-25T16:11:32Z) - Graph-informed simulation-based inference for models of active matter [5.533353383316288]
We show that simulation-based inference can be used to robustly infer active matter parameters from system observations.
Our work highlights that high-level system information is contained within the relational structure of a collective system.
arXiv Detail & Related papers (2023-04-05T09:39:17Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
We introduce a novel GP regression to incorporate the subgroup feedback.
Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches.
We execute our algorithm on two disparate social problems.
arXiv Detail & Related papers (2021-07-07T03:57:22Z) - Divide and Rule: Recurrent Partitioned Network for Dynamic Processes [25.855428321990328]
Many dynamic processes are involved with interacting variables, from physical systems to sociological analysis.
Our goal is to represent a system with a part-whole hierarchy and discover the implied dependencies among intra-system variables.
The proposed architecture consists of (i) a perceptive module that extracts a hierarchical and temporally consistent representation of the observation at multiple levels, (ii) a deductive module for determining the relational connection between neurons at each level, and (iii) a statistical module that can predict the future by conditioning on the temporal distributional estimation.
arXiv Detail & Related papers (2021-06-01T06:45:56Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural
Summarization Systems [121.78477833009671]
We investigate the performance of different summarization models under a cross-dataset setting.
A comprehensive study of 11 representative summarization systems on 5 datasets from different domains reveals the effect of model architectures and generation ways.
arXiv Detail & Related papers (2020-10-11T02:19:15Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z) - Semi-Structured Distributional Regression -- Extending Structured
Additive Models by Arbitrary Deep Neural Networks and Data Modalities [0.0]
We propose a general framework to combine structured regression models and deep neural networks into a unifying network architecture.
We demonstrate the framework's efficacy in numerical experiments and illustrate its special merits in benchmarks and real-world applications.
arXiv Detail & Related papers (2020-02-13T21:01:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.