A VAE-based Framework for Learning Multi-Level Neural Granger-Causal
Connectivity
- URL: http://arxiv.org/abs/2402.16131v1
- Date: Sun, 25 Feb 2024 16:11:32 GMT
- Title: A VAE-based Framework for Learning Multi-Level Neural Granger-Causal
Connectivity
- Authors: Jiahe Lin, Huitian Lei, George Michailidis
- Abstract summary: This paper introduces a Variational Autoencoder based framework that jointly learns Granger-causal relationships amongst components in a collection of related-yet-heterogeneous dynamical systems.
The performance of the proposed framework is evaluated on several synthetic data settings and benchmarked against existing approaches designed for individual system learning.
- Score: 15.295157876811066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Granger causality has been widely used in various application domains to
capture lead-lag relationships amongst the components of complex dynamical
systems, and the focus in extant literature has been on a single dynamical
system. In certain applications in macroeconomics and neuroscience, one has
access to data from a collection of related such systems, wherein the modeling
task of interest is to extract the shared common structure that is embedded
across them, as well as to identify the idiosyncrasies within individual ones.
This paper introduces a Variational Autoencoder (VAE) based framework that
jointly learns Granger-causal relationships amongst components in a collection
of related-yet-heterogeneous dynamical systems, and handles the aforementioned
task in a principled way. The performance of the proposed framework is
evaluated on several synthetic data settings and benchmarked against existing
approaches designed for individual system learning. The method is further
illustrated on a real dataset involving time series data from a
neurophysiological experiment and produces interpretable results.
Related papers
- Online Multi-modal Root Cause Analysis [61.94987309148539]
Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems.
Existing online RCA methods handle only single-modal data overlooking, complex interactions in multi-modal systems.
We introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization.
arXiv Detail & Related papers (2024-10-13T21:47:36Z) - Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Compositional Models for Estimating Causal Effects [0.9208007322096533]
We study a compositional approach for estimating individual treatment effects in structured systems.
This approach uses a modular architecture to model potential outcomes at each component.
We discover novel benefits of the compositional approach in causal inference.
arXiv Detail & Related papers (2024-06-25T16:56:17Z) - An Interventional Perspective on Identifiability in Gaussian LTI Systems
with Independent Component Analysis [44.892642197610215]
We show that in Gaussian Linear Time-Invariant (LTI) systems, the system parameters can be identified by introducing diverse intervention signals.
We show that Hidden Markov Models, in general, and (Gaussian) LTI systems, fulfil a generalization of the Causal de Finetti theorem with continuous parameters.
arXiv Detail & Related papers (2023-11-29T19:51:35Z) - Integrating Multimodal Data for Joint Generative Modeling of Complex Dynamics [6.848555909346641]
We provide an efficient framework to combine various sources of information for optimal reconstruction.
Our framework is fully textitgenerative, producing, after training, trajectories with the same geometrical and temporal structure as those of the ground truth system.
arXiv Detail & Related papers (2022-12-15T15:21:28Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning to Integrate Multimodal and Dynamic Functional Connectomics data for Multidimensional Clinical Characterizations [5.200461964737113]
We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography.
Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores.
Our hybrid model outperforms several state-of-the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization.
arXiv Detail & Related papers (2020-08-27T23:43:56Z) - Neural Entity Linking: A Survey of Models Based on Deep Learning [82.43751915717225]
This survey presents a comprehensive description of recent neural entity linking (EL) systems developed since 2015.
Its goal is to systemize design features of neural entity linking systems and compare their performance to the remarkable classic methods on common benchmarks.
The survey touches on applications of entity linking, focusing on the recently emerged use-case of enhancing deep pre-trained masked language models.
arXiv Detail & Related papers (2020-05-31T18:02:26Z) - Relational State-Space Model for Stochastic Multi-Object Systems [24.234120525358456]
This paper introduces the relational state-space model (R-SSM), a sequential hierarchical latent variable model.
R-SSM makes use of graph neural networks (GNNs) to simulate the joint state transitions of multiple correlated objects.
The utility of R-SSM is empirically evaluated on synthetic and real time-series datasets.
arXiv Detail & Related papers (2020-01-13T03:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.