論文の概要: Role of Dependency Distance in Text Simplification: A Human vs ChatGPT Simplification Comparison
- arxiv url: http://arxiv.org/abs/2406.17787v1
- Date: Mon, 20 May 2024 17:43:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 06:21:45.766753
- Title: Role of Dependency Distance in Text Simplification: A Human vs ChatGPT Simplification Comparison
- Title(参考訳): テキスト簡易化における依存距離の役割:人間とチャットGPTの簡易化比較
- Authors: Sumi Lee, Gondy Leroy, David Kauchak, Melissa Just,
- Abstract要約: 文法的難易度が増大する220の文は、人間の専門家とChatGPTによって単純化された。
その結果, 3つの文集合は, 平均依存距離が異なり, 原文集合の最上位, 後続のChatGPT簡易文, 人為的簡易文は平均依存距離が低かった。
- 参考スコア(独自算出の注目度): 1.1571000076281823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates human and ChatGPT text simplification and its relationship to dependency distance. A set of 220 sentences, with increasing grammatical difficulty as measured in a prior user study, were simplified by a human expert and using ChatGPT. We found that the three sentence sets all differed in mean dependency distances: the highest in the original sentence set, followed by ChatGPT simplified sentences, and the human simplified sentences showed the lowest mean dependency distance.
- Abstract(参考訳): 本研究では,人間とチャットGPTテキストの簡易化とその依存距離との関係について検討する。
従来のユーザスタディで測定された文法的難易度が増大する220文は、人間の専門家とChatGPTを用いて単純化された。
その結果, 3つの文集合は, 平均依存距離が異なり, 原文集合の最上位, 後続のChatGPT簡易文, 人為的簡易文は平均依存距離が低かった。
関連論文リスト
- Evaluating LLMs for Targeted Concept Simplification for Domain-Specific Texts [53.421616210871704]
コンテクストの欠如と難解な概念に対する不慣れさは、大人の読者がドメイン固有のテキストに難渋する大きな理由である。
テキストの書き直しを簡略化し,不慣れな概念を含むテキストの理解を支援する「目標概念の簡略化」を提案する。
本研究は,オープンソースおよび商用LLMの性能と,この課題に対する簡単な辞書ベースラインのベンチマークを行う。
論文 参考訳(メタデータ) (2024-10-28T05:56:51Z) - Grammaticality Representation in ChatGPT as Compared to Linguists and Laypeople [0.0]
本研究は,148の言語現象について,住民の文法的判断を収集した以前の研究に基づいている。
我々の主な焦点は、これらの言語構成の判断において、ChatGPTを一般人と言語学者の両方と比較することであった。
全体として,ChatGPTと言語学者の間には73%から95%の収束率があり,全体としては89%と推定された。
論文 参考訳(メタデータ) (2024-06-17T00:23:16Z) - Text and Audio Simplification: Human vs. ChatGPT [1.0785332257549372]
テキストの難易度を示す14の指標を用いて,人間とチャットGPTの簡易テキストを比較した。
単純なコーパスは人間の簡易テキストとの類似性が高いことがわかった。
医学領域の専門家による評価では、ChatGPTスタイルが好まれていたが、内容保持のためにテキスト自体が低く評価された。
論文 参考訳(メタデータ) (2024-04-29T21:00:33Z) - Towards a Psychology of Machines: Large Language Models Predict Human Memory [0.0]
大規模言語モデル(LLM)は、人間の認知に基づいていないにもかかわらず、様々なタスクで優れています。
本研究では,ChatGPTが言語ベースのメモリタスクにおいて,人間のパフォーマンスを予測する能力について検討する。
論文 参考訳(メタデータ) (2024-03-08T08:41:14Z) - Is ChatGPT Involved in Texts? Measure the Polish Ratio to Detect
ChatGPT-Generated Text [48.36706154871577]
我々はHPPT(ChatGPT-polished academic abstracts)と呼ばれる新しいデータセットを紹介する。
純粋なChatGPT生成テキストの代わりに、人書きとChatGPTポリケートされた抽象文のペアを構成することで、既存のコーパスから分岐する。
また,ChatGPTによる修正の度合いを,オリジナルの人文テキストと比較した革新的な尺度であるPolish Ratio法を提案する。
論文 参考訳(メタデータ) (2023-07-21T06:38:37Z) - A New Dataset and Empirical Study for Sentence Simplification in Chinese [50.0624778757462]
本稿では,中国語で文の単純化を評価するための新しいデータセットであるCSSを紹介する。
我々は、人間のアノテーションから手作業による単純化を収集し、英語と中国語の文の簡易化の違いを示すデータ解析を行う。
最後に,CSS上で評価することで,大言語モデルが高品質な中国語文の簡易化システムとして機能するかどうかを考察する。
論文 参考訳(メタデータ) (2023-06-07T06:47:34Z) - A bounded rationality account of dependency length minimization in Hindi [0.0]
DependenCY LENGTH MINIMIZATIONの原理は、効果的なコミュニケーションのために人間の言語の構造を形成すると考えられている。
典型的には、長短成分と後短長成分の配置は、文全体の依存長を最小にすることが知られている。
本研究では,ヒンディー語における単語順の嗜好について,主動詞の横に最短助詞のみを置くという仮説を検証した。
論文 参考訳(メタデータ) (2023-04-22T13:53:50Z) - CORE-Text: Improving Scene Text Detection with Contrastive Relational
Reasoning [65.57338873921168]
自然界におけるテキストインスタンスのローカライズは、コンピュータビジョンにおける根本的な課題であると考えられている。
本研究では,サブテキスト問題を定量的に解析し,シンプルで効果的な設計であるContrastive Relation(CORE)モジュールを提案する。
我々は、COREモジュールをMask R-CNNの2段階テキスト検出器に統合し、テキスト検出器CORE-Textを考案する。
論文 参考訳(メタデータ) (2021-12-14T16:22:25Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
テキスト編集や意味的類似性評価といった自然言語処理タスクにおいて、ペア化されたテキストに重複が頻繁に発生する。
本稿では,マスク・アンド・予測戦略を用いてこの問題に対処することを目的とする。
本稿では,最も長い単語列の単語を隣接する単語とみなし,その位置の分布を予測するためにマスク付き言語モデリング(MLM)を用いる。
セマンティックテキスト類似性の実験では、NDDは様々な意味的差異、特に高い重なり合うペアテキストに対してより敏感であることが示されている。
論文 参考訳(メタデータ) (2021-10-04T03:59:15Z) - Three Sentences Are All You Need: Local Path Enhanced Document Relation
Extraction [54.95848026576076]
本稿では,文書レベルREのエビデンス文を選択するための,恥ずかしいほど単純だが効果的な方法を提案する。
私たちはhttps://github.com/AndrewZhe/Three-Sentences-Are-All-You-Need.comでコードを公開しました。
論文 参考訳(メタデータ) (2021-06-03T12:29:40Z) - Context-Preserving Text Simplification [11.830061911323025]
本稿では、複雑な英語文を単純化された文のセマンティックな階層に分割し、言い換える、文脈保存型テキスト単純化(TS)アプローチを提案する。
言語学的に原則化された変換パターンの集合を用いて、入力文は、修辞的関係を通じてリンクされる中心文と付随する文脈の形式で階層的な表現に変換される。
RST-DTに含まれるアノテーションとの比較分析により,分割文間の文脈的階層を89%の精度で捉え,それらの間に保持される修辞関係の分類において平均69%の精度で到達できることが示された。
論文 参考訳(メタデータ) (2021-05-24T09:54:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。